基于改进SCAM算法的结构物理参数识别贝叶斯方法

赵一男,公茂盛,左占宣,高艳滨

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 121-126.

PDF(1642 KB)
PDF(1642 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 121-126.
论文

基于改进SCAM算法的结构物理参数识别贝叶斯方法

  • 赵一男,公茂盛,左占宣,高艳滨
作者信息 +

Bayesian method for structural physical parameter identification based on an improved SCAM algorithm

  • ZHAO Yinan,GONG Maosheng,ZUO Zhanxuan,GAO Yanbin
Author information +
文章历史 +

摘要

针对贝叶斯估计中逐分量自适应Metropolis(single component adaptive Metropolis ,SCAM)算法易生成重复性样本,导致抽样效率低、结果误差大等问题,重新定义了提议分布方差的表达式,提出了改进的SCAM算法,使得抽样样本序列构成的马尔可夫链相对稳定。进而将贝叶斯理论与改进的SCAM算法相结合,求解结构物理参数的后验边缘概率分布、最优估计值以识别和估计结构损伤,通过理论分析和结构数值模拟算例验证了改进的SCAM算法的有效性。结果表明,改进的SCAM算法既提高了抽样效率,又提高了计算结果准确性,可应用于物理参数识别及损伤识别与评估等工作。
 

Abstract

The traditional SCAM (single component adaptive Metropolis) algorithm was improved to solve the problems such as repetitive samples, low sampling efficiency and large error.A new expression for the variance of the proposal distribution was defined and proposed to make the Markov chain, composed of sample sequences, relatively stable.Then, the Bayesian theory and the improved SCAM algorithm were combined to obtain the posterior marginal probability distribution and optimal estimation value of structural physical parameters to identify structural damages.The effectiveness of the improved SCAM algorithm was verified by the theoretical analysis and numerical simulation.The results show that the improved SCAM algorithm raises not only the accuracy of calculation results, but also the sampling efficiency.The method can be applied to physical parameter identification, damage identification and damage evaluation.

关键词

结构物理参数识别
/ 贝叶斯估计 / 马尔可夫蒙特卡罗(MCMC)抽样 / 提议分布 / 逐分量自适应Metropolis(SCAM)算法

Key words

structural physical parameter identification / Bayesian estimation / Markow Chain Monte Carlo(MCMC) sampling / proposal distribution / single component adaptive Metropolis(SCAM) algorithm

引用本文

导出引用
赵一男,公茂盛,左占宣,高艳滨. 基于改进SCAM算法的结构物理参数识别贝叶斯方法[J]. 振动与冲击, 2021, 40(6): 121-126
ZHAO Yinan,GONG Maosheng,ZUO Zhanxuan,GAO Yanbin. Bayesian method for structural physical parameter identification based on an improved SCAM algorithm[J]. Journal of Vibration and Shock, 2021, 40(6): 121-126

参考文献

[1]侯立群, 赵雪峰, 欧进萍, 等.结构损伤诊断不确定性方法研究进展[J].振动与冲击, 2014, 33(18): 50-58.
HOU Liqun, ZHAO Xuefeng, OU Jinping, et al.A review of nondeterministic methods for structural damage diagnosis[J].Journal of Vibration and Shock, 2014, 33(18): 50-58.
[2]姜浩, 孙海飞, 王凯.基于不确定性的结构损伤识别方法研究综述[J].低温建筑技术, 2017, 39(8): 36-39.
JIANG Hao, SUN Haifei, WANG Kai.A review of structural damage identification methods based on uncertainty[J].Low Temperature Architecture Technology, 2017, 39(8): 36-39.
[3]曹晖, 林秀萍.结构损伤识别中噪声的模拟[J].振动与冲击,2010, 29(5):106-109.
CAO Hui, LIN Xiuping.The noise simulation in structural damage identification[J].Journal of Vibration and Shock, 2010, 29(5): 106-109.
[4]SHAG G,RADZIEN'SKI M, CAO M S,et al.A novel method for single and multiple damage detection in beams using relative natural frequency changes[J].Mechanical Systems and Signal Processing, 2019, 132(1): 335-352.
[5]UMAR S, BAKHARY N, ABIDIN A R Z.Response surface methodology for damage detection using frequency and mode shape[J].Measurement, 2018, 115: 258-268.
[6]BECK J L.Statistical system identification of structures[C]// Proceedings of the Fifth International Conference on Structural Safety and Reliability.New York: ASCE, 1989.
[7]李小华, 谢礼立, 公茂盛.结构物理参数识别的贝叶斯估计马尔可夫蒙特卡罗方法[J].振动与冲击, 2010, 29(4): 59-63.
LI Xiaohua, XIE Lili, GONG Maosheng.Structural physical parameter identification using Bayesian estimation with Markov Chain Monte Carlo method[J].Journal of Vibration and Shock, 2010, 29(4): 59-63.
[8]HASTINGS W K.Monte Carlo Sampling methods using Markov Chains and their applications[J].Biometrika, 1970, 57(1):97-109.
[9]HOLDEN  L, HAUGE R, HOLDEN M.Adaptive independent Metropolis-Hastings[J].The Annals of Applied Probability, 2009, 19(1): 395-413.
[10]方圣恩, 陈杉, 董照亮.结构概率损伤识别的改进近似贝叶斯计算[J].振动工程学报, 2019, 32(2): 224-233.
FANG Shengen, CHEN Shan, DONG Zhaoliang.Improved approximate Bayesian computation for probabilistic damage identification of structures[J].Journal of Vibration Engineering, 2019, 32(2): 224-233.
[11]刘书奎, 吴子燕, 张玉兵.基于Gibbs抽样的马尔科夫蒙特卡罗方法在结构物理参数识别及损伤定位中的研究[J].振动与冲击, 2011, 30(10): 203-207.
LIU Shukui, WU Ziyan, ZHANG Yubing.The identification of physical parameters and damage locations using the Gibbs sampling based on the Markov Chain Monte Carlo method[J].Journal of Vibration and Shock, 2011, 30(10): 203-207.
[12]杨庆.基于多级贝叶斯模型修正的结构损伤识别方法研究[D].大连: 大连交通大学, 2018.
[13]HAARIO H, TAMMINEN S J.An adaptive metropolis algorithm[J].Bernoulli, 2001, 7(2): 223-242.
[14]HAARIO H, SAKSMAN E, TAMMINEN J.Componentwise adaptation for high dimensional MCMC[J].Computational Statistics, 2005, 20(2): 265-273.
[15]SIMOEN E, MOAVENI B, CONTE J P, et al.Uncertainty quantification in the assessment of progressive damage in a 7-story full-scale building slice[J].Journal of Engineering Mechanics, 2013, 139(12): 1818-1830.
[16]高艳滨.基于贝叶斯模型更新的结构损伤识别方法改进及应用[D].哈尔滨: 中国地震局工程力学研究所, 2015.
[17]ROBERTSG O, ROSENTHAL J S.Optimal scaling for various Metropolis-Hastings algorithms[J].Statistical Science, 2001, 16(4): 351-367.
[18]ROBERTSG O, GELMAN A, GILKS W R.Weak convergence and optimal scaling of random walk Metropolis algorithms[J].The Annals of Applied Probability, 1997, 7(1): 110-120.
[19]GELMANA , ROBERTS G O , GILKS W R .Efficient Metropolis jumping rules[M]// Bayesian Statistics.New York:Oxford University Press, 1996.
[20]PAPAIOANNOU I, BETZ W, ZWIRGLMAIER K, et al.MCMC algorithms for subset simulation[J].Probabilistic Engineering Mechanics, 2015, 41(41): 89-103.

PDF(1642 KB)

352

Accesses

0

Citation

Detail

段落导航
相关文章

/