基于工况识别的IWM-EV主动悬架MOPSO模糊滑模控制

胡一明1,李以农1,2,李哲3,郑玲1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 147-157.

PDF(4079 KB)
PDF(4079 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 147-157.
论文

基于工况识别的IWM-EV主动悬架MOPSO模糊滑模控制

  • 胡一明1,李以农1,2,李哲3,郑玲1,2#br# 
作者信息 +

MOPSO fuzzy sliding mode control of an IWM-EV active suspension based on operating condition recognition

  • HU Yiming1,LI Yinong1,2,LI Zhe3,ZHENG Ling1,2
Author information +
文章历史 +

摘要

轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。

Abstract

The adaptive sliding-mode control based on road identification was applied to inhibit the negative vibration effect caused by the in-wheel motor (IWM) in an electric vehicle (EV) and a  multi-objective particle swarm optimization (MOPSO) fuzzy sliding-mode controller based on working condition identification was designed.Firstly, the electromechanical model of the vertical unbalance excitation and the driving torque was established.Combining the electromechanical model with the vehicle dynamics model, a vertical-driving nonlinear dynamics coupling model for the motor and suspension was established.Based on the coupling model, the characteristics of the negative vibration effect in the electric vehicle were analyzed.Aiming at  the issues of strong nonlinearity of the model, the non-linear controller based on working condition identification was designed.The simulation results show that the controller can effectively reduce the relative eccentricity of the motor, mitigate the unbalanced electromagnetic force of the in-wheel motor,improve the dynamic performance of the vehicle and effectively suppress the vibration negative effect of the in-wheel motor in the electric vehicle.

关键词

电动汽车(IWM) / 轮毂电机(EV) / 非线性机电耦合模型 / 工况识别 / 多目标粒子群(MOPSO)模糊滑模控制

Key words

in-wheel motor(IWM) / electric vehicle(EV) / nonlinear electromechanical coupling model / operating condition recognition / multi-objective particle swarm optimization(MOPSO) sliding mode control

引用本文

导出引用
胡一明1,李以农1,2,李哲3,郑玲1,2. 基于工况识别的IWM-EV主动悬架MOPSO模糊滑模控制[J]. 振动与冲击, 2021, 40(6): 147-157
HU Yiming1,LI Yinong1,2,LI Zhe3,ZHENG Ling1,2. MOPSO fuzzy sliding mode control of an IWM-EV active suspension based on operating condition recognition[J]. Journal of Vibration and Shock, 2021, 40(6): 147-157

参考文献

[1]MURATA S. Innovation by in-wheel-motor drive unit[J].Vehicle System Dynamics, 2012, 50(6): 807-830.
[2]RAHMAN K M, FAHIMI B, SURESH G, et al.Advantages of switched reluctance motor applications to EV and HEV: design and control issues[J].IEEE Transactions on Industry Applications, 2000, 36(1): 111-121.
[3]GAO Y,MCCULLOCH M D.A review of high power density switched reluctance machines suitable for automotive applications[C]∥2012 XXth International Conference on Electrical Machines.Marseille: IEEE, 2012.
[4]SHI T Z,WANG D F, CHEN S M.Investigation of negative influences on ride comfort performance of in-wheel motor vehicles with high Unsprung Mass[C]∥2015 International Conference on Power Electronics and Energy Engineering.Paris: Atlantis Press, 2015.
[5]TAN D,LU C.The influence of the magnetic force generated by the in-wheel motor on the vertical and lateral coupling dynamics of electric vehicles[J].IEEE Transactions on Vehicular Technology, 2015, 65(6): 4655-4668.
[6]EASTHAM J F, BALCHIN M J, BETZER T, et al.Disc motor with reduced unsprung mass for direct EV wheel drive[C]∥1995 Proceedings of the IEEE International Symposium on Industrial Electronics.Dubrovnik: IEEE, 1995.
[7]陈辛波,王叶枫,王威,等.基于齿轮连杆的新型动力吸振式轮边电驱动系统研究与设计[J].振动与冲击,2016,35(18):46-51.
CHEN Xinbo, WANG Yefeng, WANG Wei, et al.Analysis and design of a new type of close wheel drive system based on gear-linkage and using motor as dynamic absorber [J].Journal of Vibration and Shock,2016,35(18):46-51.
[8]NAGAYA G, WAKAO Y, ABE A.Development of an in-wheel drive with advanced dynamic-damper mechanism[J].JSAE Review, 2003, 24(4): 477-481.
[9]DIVANDARI M,DADPOUR A.Radial force and torque ripple optimization for acoustic noise reduction of SRM drives via fuzzy logic control[C]∥2010 9th IEEE/IAS International Conference on Industry Applications-INDUSCON 2010.Sao Paulo: IEEE, 2010.
[10]INAGAKI H, KATO H, KUZUYA H, et al.Drive train vibration and acoustic noise reduction control of switched reluctance motor for electric vehicle[R].[S.l.]:SAE Technical Paper, 2002.
[11]钟银辉,李以农,杨超,等.基于主动悬架控制轮边驱动电动车垂向振动研究[J].振动与冲击,2017,36(11):242-247.
ZHONG Yinhui, LI Yinong, YANG Chao, et al.Vertical vibration of in-wheel motor electric vehicles based on active suspension control [J].Journal of Vibration and Shock,2017,36(11):242-247.
[12]WANG Y, LI Y, SUN W, et al.Effect of the unbalanced vertical force of a switched reluctance motor on the stability and the comfort of an in-wheel motor electric vehicle[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(12): 1569-1584.
[13]SUN W, LI Y, HUANG J, et al.Vibration effect and control of in-wheel switched reluctance motor for electric vehicle[J].Journal of Sound and Vibration, 2015, 338: 105-120.
[14]寇发荣,方涛,任全,等.直线电机式主动悬架内外环控制研究[J].系统仿真学报,2018,30(7):2615-2621.
KOU Farong, FANG Tao, REN Quan,et al.Research on inner and outer loop control of active suspension with linear motor [J].Journal of System Simulation, 2018,30(7): 2615-2621.
[15]王骏骋,何仁.电动轮轮内主动减振器的非线性最优滑模模糊控制[J].汽车工程,2018,40(6):719-725.
WANG Juncheng, HE Ren.Nonlinear optimal sliding mode fuzzy control for in-wheel active vibration damper of electric wheel [J].Automotive Engineering, 2018,40(6):719-725.
[16]HUANG Y, NA J, WU X, et al.Robust adaptive control for vehicle active suspension systems with uncertain dynamics[J].Transactions of the Institute of Measurement and Control, 2018, 40(4): 1237-1249.
[17]CHENX, WU L, YIN J, et al.Robust H∞ control design of an electromagnetic actuated active suspension considering the structure non-linearity[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2019,233(4): 1008-1022.
[18]PACEJKA H.Tire and vehicle dynamics[M].New York: Elsevier, 2005.
[19]WONG K F, CHENG K W E, HO S L.Simulation of switched reluctance motor based on a combination of circuit-oriented and signal-oriented approaches using Natlab/SimPowersy Stems[J].Electric Power Components and Systems, 2007, 35(2): 205-219.
[20]FAHIMM B, SURESH G, MAHDAVI J, et al.A new approach to model switched reluctance motor drive application to dynamic performance prediction, control and design [C]∥29th Annual IEEE  Power Electronics Specialists Conference.Fukuoka: IEEE, 1998.
[21]HUSAIN I, EHSANI M.Torque ripple minimization in switched reluctance motor drives by PWM current control [J] IEEE Transactions on Power Electronics, 1996, 11(1): 83-88.
[22]YE Z Z, MARTIN T W, BALDA J C.Modeling and nonlinear control of a switched reluctance motor to minimize torque ripple [C]∥IEEE International Conference on Systems, Man, and Cybernetics.Nashville: IEEE, 2000.
[23]MAHDAVI J, SURESH G, FAHIMI B, et al.Dynamic modeling of nonlinear SRM drive with Pspice [C]∥ IAS’97 Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.New Orleans: IEEE, 1997.
[24]KRISHNAMURTHY M, EDRINGTON C S, EMADI A, et al.Making the case for applications of switched reluctance motor technology in automotive products [J].IEEE Transactions on Power Electronics,2006,21(3):659-675.
[25]CAMERON D E, LANG J H, UMANS S D.The origin of acoustic noise in variable-reluctance motors [C]∥Conference Record of the IEEE Industry Applications Society Annual Meeting.San Diego: IEEE, 1989.
[26]COELLO C A C, PULIDO G T, LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
[27]彭冲,郑玲, 李以农.基于粒子群优化算法主动悬架作动器多目标优化设计[J].中南大学学报(自然科学版), 2017, 48(4): 968-976.
PENG Chong, ZHENG Ling, LI Yinong.Optimum design of active suspension actuator using multi-objective stochastic particle swarm optimization [J].Journal of Central South University(Science and Technology), 2017, 48(4): 968-976.
 

PDF(4079 KB)

Accesses

Citation

Detail

段落导航
相关文章

/