[1]HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceeding of the Royal Society: A, 1998(454): 903-993.
[2]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[3]RAM R,MOHANTY M N.Comparative analysis of EMD and VMD algorithm in speech enhancement[J].International Journal of Natural Computing Research, 2017, 6(1):17-35.
[4]王奉涛,柳晨曦,张涛,等.基于k值优化VMD的滚动轴承故障诊断方法[J].振动、测试与诊断,2018,38(3):540-547.
WANG Fengtao, LIU Chenxi, ZHANG Tao, et al.Fault diagnosis of rolling bearing based on k-optimized VMD [J].Journal of Vibration, Measurement & Diagnosis, 2018,38(3):540-547.
[5]毕凤荣,李鑫,马腾.基于变模式分解的爆震特征识别方法[J].振动、测试与诊断,2018,38(5): 903-907.
BI Fengrong, LI Xin, MA Teng.Knock detection using variational mode decomposition[J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(5): 903-907.
[6]马增强,张俊甲,张安,等.基于VMD-SVD联合降噪和频率切片小波变换的滚动轴承故障特征提取[J].振动与冲击,2018,37(17):210-217.
MA Zengqiang, ZHANG Junjia, ZHANG An, et al.Fault fearure extraction of rolling bearing based on VMD-SVD joint de-noising and FSWT[J].Journal of Vibration and Shock, 2018,37(17):210-217.
[7]李华,伍星,刘韬,等.变分模态分解和改进的自适应共振技术在轴承故障特征提取中的应用[J].振动工程学报,2018,31(4):718-726.
LI Hua, WU Xing, LIU Tao, et al.Application of variational mode decomposition and improved adaptive resonance technology in bearing fault feature extraction [J].Jouranl of Vibration Engineering, 2018,31(4):718-726.
[8]李华,伍星,刘韬,等.基于信息熵优化变分模态分解的滚动轴承故障特征提取[J].振动与冲击,2018,37(23):219-225.
LI Hua, WU Xing, LIU Tao, et al.Bearing fault feature extraction based on VMD optimized with information entropy[J].Journal of Vibration and Shock, 2018,37(23):219-225.
[9]程军圣,李梦君,欧龙辉,等.FA-PMA-VMD方法及其在齿根裂纹故障诊断中的应用[J].振动与冲击,2018,37(15):27-32.
CHENG Junsheng, LI Mengjun, OU Longhui, et al.FA-PMA-VMD method and its application in gear tooth root crack fault diagnosis [J].Journal of Vibration and Shock,2018, 37(15): 27-32.
[10]唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(5): 73-81.
TANG Guiji, WANG Xiaolong.Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J].Journal of Xi’an Jiaotong University, 2015,49(5): 73-81.
[11]马洪斌,佟庆彬,张亚男.优化参数的变分模态分解在滚动轴承故障诊断中的应用[J].中国机械工程,2018,29(4): 390-397.
MA Hongbin, TONG Qinbin, ZHANG Yanan.Applications of optimization parameters VMD to fault diagnosis of rolling bering[J].China Mechanical Engineering, 2018,29(4):390-397.
[12]边杰.基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J].推进技术,2017,38(7):1618-1624.
BIAN Jie.Fault diagnosis of bearing combining parameter optimized variational mode decomposition based on genetic algorithm with 1.5-dimensional spectrum[J].Journal of Propulsion Technology, 2017, 38(7): 1618-1624.
[13]AMARJIT, SINGH,HARSHIT.An enhanced area reduction technique for integrated circuit using genetic algorithm[J].IOSR Journal of Computer Engineering,2014,16(2): 14-19.
[14]ABBOUD D, ELBADAOUI M, SMITH W A.Advanced bearing diagnostics: a comparative study of two powerful approaches[J].Mechanical Systems and Signal Processing, 2019, 114: 604-627.