一种基于遗传算法的VMD参数优化轴承故障诊断新方法

何勇,王红,谷穗

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 184-189.

PDF(1958 KB)
PDF(1958 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 184-189.
论文

一种基于遗传算法的VMD参数优化轴承故障诊断新方法

  • 何勇,王红,谷穗
作者信息 +

New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm

  • HE Yong,WANG Hong,GU Sui
Author information +
文章历史 +

摘要

为准确提取轴承故障特征信息,提出以峭度指标和包络熵为综合目标函数的变分模态分解(variational mode decomposition,VMD)参数优化方法,并改进了诊断流程实现了无需指定参数优化范围的自适应参数优化算法。通过遗传算法对综合目标函数最小值进行搜索,以确定模态分量个数及惩罚参数的最佳组合。原始故障信号经最佳参数组合下的VMD方法分解为若干个本征模态函数,选择最小综合目标函数值对应的模态分量进行包络解调分析,进而通过模态分量的包络谱判断轴承故障类型。通过实测故障信号分析表明,该方法能够从噪声干扰中有效提取到早期故障信号的微弱故障特征,实现了轴承故障类型的准确判定,验证了该方法的有效性。

Abstract

In order to extract fault features of bearings accurately, a method of parameter optimized VMD with a synthetic objective function composed of kurtosis criterion and envelope entropy was proposed.The genetic algorithm was used to search for the minimum value of the synthetic objective function so as to determine.The best combination of the number of modal components and the secondary penalty factor.The original fault signal was decomposed into several intrinsic mode function components by the parameter optimized VMD method, and the best signal component was selected and processed by an envelope demodulation algorithm, then the fault type of bearing was judged by the envelope spectrum of the modal component.Through analyzing the measured signals of fault bearings, it is shown that the proposed method can effectively distinguish the weak features of incipient fault signals from strong noises and achieve to judge the type of faults accurately.The effectiveness of proposed method is thus verified.

关键词

变分模态分解(VMD) / 遗传算法 / 滚动轴承 / 早期故障诊断

Key words

variational mode decomposition(VMD) / genetic algorithm / rolling bearing / incipient fault diagnosis

引用本文

导出引用
何勇,王红,谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击, 2021, 40(6): 184-189
HE Yong,WANG Hong,GU Sui. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(6): 184-189

参考文献

[1]HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceeding of the Royal Society: A, 1998(454): 903-993.
[2]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[3]RAM R,MOHANTY M N.Comparative analysis of EMD and VMD algorithm in speech enhancement[J].International Journal of Natural Computing Research, 2017, 6(1):17-35.
[4]王奉涛,柳晨曦,张涛,等.基于k值优化VMD的滚动轴承故障诊断方法[J].振动、测试与诊断,2018,38(3):540-547.
WANG Fengtao, LIU Chenxi, ZHANG Tao, et al.Fault diagnosis of rolling bearing based on k-optimized VMD [J].Journal of Vibration, Measurement & Diagnosis, 2018,38(3):540-547.
[5]毕凤荣,李鑫,马腾.基于变模式分解的爆震特征识别方法[J].振动、测试与诊断,2018,38(5): 903-907.
BI Fengrong, LI Xin, MA Teng.Knock detection using variational mode decomposition[J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(5): 903-907.
[6]马增强,张俊甲,张安,等.基于VMD-SVD联合降噪和频率切片小波变换的滚动轴承故障特征提取[J].振动与冲击,2018,37(17):210-217.
MA Zengqiang, ZHANG Junjia, ZHANG An, et al.Fault fearure extraction of rolling bearing based on VMD-SVD joint de-noising and FSWT[J].Journal of Vibration and Shock, 2018,37(17):210-217.
[7]李华,伍星,刘韬,等.变分模态分解和改进的自适应共振技术在轴承故障特征提取中的应用[J].振动工程学报,2018,31(4):718-726.
LI Hua, WU Xing, LIU Tao, et al.Application of variational mode decomposition and improved adaptive resonance technology in bearing fault feature extraction [J].Jouranl of Vibration Engineering, 2018,31(4):718-726.
[8]李华,伍星,刘韬,等.基于信息熵优化变分模态分解的滚动轴承故障特征提取[J].振动与冲击,2018,37(23):219-225.
LI Hua, WU Xing, LIU Tao, et al.Bearing fault feature extraction based on VMD optimized with information entropy[J].Journal of Vibration and Shock, 2018,37(23):219-225.
[9]程军圣,李梦君,欧龙辉,等.FA-PMA-VMD方法及其在齿根裂纹故障诊断中的应用[J].振动与冲击,2018,37(15):27-32.
CHENG Junsheng, LI Mengjun, OU Longhui, et al.FA-PMA-VMD method and its application in gear tooth root crack fault diagnosis [J].Journal of Vibration and Shock,2018, 37(15): 27-32.
[10]唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(5): 73-81.
TANG Guiji, WANG Xiaolong.Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J].Journal of Xi’an Jiaotong University, 2015,49(5): 73-81.
[11]马洪斌,佟庆彬,张亚男.优化参数的变分模态分解在滚动轴承故障诊断中的应用[J].中国机械工程,2018,29(4): 390-397.
MA Hongbin, TONG Qinbin, ZHANG Yanan.Applications of optimization parameters VMD to fault diagnosis of rolling bering[J].China Mechanical Engineering, 2018,29(4):390-397.
[12]边杰.基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J].推进技术,2017,38(7):1618-1624.
BIAN Jie.Fault diagnosis of bearing combining parameter optimized variational mode decomposition based on genetic algorithm with 1.5-dimensional spectrum[J].Journal of Propulsion Technology, 2017, 38(7): 1618-1624.
[13]AMARJIT, SINGH,HARSHIT.An enhanced area reduction technique for integrated circuit using genetic algorithm[J].IOSR Journal of Computer Engineering,2014,16(2): 14-19.
[14]ABBOUD D, ELBADAOUI M, SMITH W A.Advanced bearing diagnostics: a comparative study of two powerful approaches[J].Mechanical Systems and Signal Processing, 2019, 114: 604-627.
 
 

PDF(1958 KB)

Accesses

Citation

Detail

段落导航
相关文章

/