一种球形机器人高速直线运动的自适应控制方法

马龙,孙汉旭,宋荆洲,兰晓娟

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 201-211.

PDF(1869 KB)
PDF(1869 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 201-211.
论文

一种球形机器人高速直线运动的自适应控制方法

  • 马龙,孙汉旭,宋荆洲,兰晓娟
作者信息 +

Adaptive control method for the high-speed linear motion of a spherical robot

  • MA Long,SUN Hanxu,SONG Jingzhou,LAN Xiaojuan
Author information +
文章历史 +

摘要

具备高速精准运动能力是球形机器人技术发展的重要方向。针对高速运动状态下外界扰动和系统抖振等因素对球形机器人精准直线运行产生的影响,开展面向高速直线运动的分数阶自适应分层积分滑模控制方法的研究。提出面向高速直线运动的球形机器人标准动力学模型并且以此作为控制方法的研究基础,将积分项和分数阶微积分项与分层滑模控制方法相结合,并且对高速运动过程中的未知扰动进行自适应评估和补偿,基于BYQ-GS高速运动球形机器人对该方法的控制效果展开验证。研究结果表明,在高速直线运动状态下,随着速度的增大,该控制方法能够有效提高系统响应速度、收敛速度、稳定性和鲁棒性,对球形机器人高速精准控制的实现有重要的意义。

Abstract

The development of spherical robots with high-speed and precise motion capability is of great importance.Aiming at the influences of factors such as external disturbances and system chattering on the high-speed and precise motion of a spherical robot, a fractional adaptive hierarchical integral sliding mode controller (F-AIHSMC) was introduced.The standard dynamic model of the spherical robot in the state of high-speed linear motion was established and used as the basis for the study of control method.The integral and fractional calculus terms were integrated into the hierarchical sliding mode control method, and the unknown disturbance during high-speed motion was adaptively evaluated and compensated.Finally, the control effect of the method was verified by using a BYQ-GS spherical robot as an example.The results show that, as the speed increases, the F-AIHSMC can effectively improve the response speed, convergence speed, robustness and stability of the system in high-speed linear motion.The study is of great significance for the realization of high-speed and precise control of spherical robots.

关键词

球形机器人 / 自适应控制 / 分层滑模控制 / 高速运动

Key words

spherical robot / adaptive control / hierarchical sliding mode control / high-speed motion

引用本文

导出引用
马龙,孙汉旭,宋荆洲,兰晓娟. 一种球形机器人高速直线运动的自适应控制方法[J]. 振动与冲击, 2021, 40(6): 201-211
MA Long,SUN Hanxu,SONG Jingzhou,LAN Xiaojuan. Adaptive control method for the high-speed linear motion of a spherical robot[J]. Journal of Vibration and Shock, 2021, 40(6): 201-211

参考文献

[1]战强, 李伟.球形移动机器人的研究进展与发展趋势[J].机械工程学报, 2019, 55(9): 1-17.
ZHAN Qiang, LI Wei.Research progress and development trend of spherical mobile robots [J].Journal of Mechanical Engineering, 2019, 55(9): 1-17.
[2]李艳生, 杨美美, 孙汉旭, 等.一种摆式球形机器人水中俯仰运动的稳定控制方法[J].振动与冲击, 2018, 37(13): 149-154.
LI Yansheng, YANG Meimei, SUN Hanxu, et al.A stability control method for pitching motion in water of a pendulum type spherical robot [J].Journal of Vibration and Shock, 2018, 37(13): 149-154.
[3]赵磊.基于动力学的高速轮式机器人漂移运动控制方法研究[D].天津: 南开大学, 2014.
[4]JUNG E J, LEE J H, YI B J, et al.Marathoner tracking algorithms for a high speed mobile robot [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems.San Francisco: IEEE,  2011.
[5]LIU D L, SUN H X, JIA Q X.A family of spherical mobile robot: driving ahead motion control by feedback linearization [C]// IEEE Systems and Control in Aerospace and Astronautics.Shenzhen: IEEE, 2008.
[6]赵勃, 王鹏飞, 孙立宁, 等.双偏心质量块驱动球形机器人的直线运动控制[J].机械工程学报, 2011, 47(11): 1-6.
ZHAO Bo, WANG Pengfei, SUN Lining, et al.Linear motion control of two-pendulums-driven spherical robot [J].Journal of Mechanical Engineering, 2011, 47(11): 1-6.
[7]MADHUSHANI T W U, MAITHRIPALA D H S, BERG J M.Feedback regularization and geometric PID control for trajectory tracking of coupled mechanical systems: hoop robots on an inclined plane [C]// IEEE American Control Conference.Seattle: IEEE, 2017.
[8]梁捷, 陈力, 梁频.柔性空间机器人基于关节柔性补偿控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制[J].振动与冲击, 2016, 35(18) : 62-69.
LIANG Jie, CHEN Li, LIANG Pin.Adaptive fuzzy global sliding mode control and active hierarchical vibration suppression of space robot with flexible-link and flexible-joint [J].Journal of Vibration and Shock, 2016, 35(18): 62-69.
[9]HU Q L, MA G F, XIE L H.Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity [J].Automatica, 2008, 44(2): 552-559.
[10]YU T, SUN H X, JIA Q X, et al.Decoupled sliding mode control for the climbing motion of spherical mobile robots [J].Advances in Future Computer and Control Systems, 2012, 2: 671-677.
[11]YU T, SUN H X, JIA Q X, et al.Sliding mode control of pendulum-driven spherical robots [J]. Advanced Materials Research, 2012, 591/592/593: 1519-1522.
[12]YUE M, LIU B Y.Adaptive control of an underactuated spherical robot with a dynamic stable equilibrium point using hierarchical sliding mode approach [J].International Journal of Adaptive Control & Signal Processing, 2014, 28(6): 523-535.
[13]LADACI S, CHAREF A.On fractional adaptive control [J].Nonlinear Dynamics, 2006, 43(4): 365-378.
[14]周挺, 徐宇工, 吴斌.球形机器人直线运动速度的分数阶分层滑模控制 [C]// 第29届中国控制与决策会议论文集.重庆:《控制与决策》编辑部, 2017.
[15]于涛, 王益博, 孙汉旭, 等.基于干扰观测器的球形移动机器人直线运动控制[J].中国测试, 2019, 45(9): 123-129.
YU Tao, WANG Yibo, SUN Hanxu, et al.Linear motion control of a spherical mobile robot based on disturbance observer [J].China Measurement & Test, 2019, 45(9): 123-129.
[16]史成坤. 一种紧急救援的带臂球形机器人的研究[D].北京: 北京邮电大学, 2010.
[17]YUE M, LIU B Y, AN C.Extended state observer-based adaptive hierarchical sliding mode control for longitudinal movement of a spherical robot [J].Nonlinear Dynamics, 2014, 78(2): 1233-1244.
[18]MEYSAR Z, NOTASH L.Adaptive sliding mode control with uncertainty estimator for robot manipulators [J].Mechanism and Machine Theory, 2010, 45(1): 80-90.
[19]GUO B L, PU X K, HUANG F H, et al.Fractional partial differential equations and their numerical solutions [M].Beijing: Science Press, 2015.
[20]DUMLU A. Design of a fractional-order adaptive integral sliding mode controller for the trajectory tracking control of robot manipulators [J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, 232(9): 1212-1229.
[21]闵颖颖, 刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版), 2007, 37(1):51-55.
MIN Yingying, LIU Yungang.Barbalat Lemma and its application in analysis of system stability [J].Journal of Shandong University (Engineering Science), 2007, 37(1): 51-55.
[22]徐智超.基于LabVIEW的分数阶控制器实现与性能分析[D].大连:大连交通大学, 2013.

PDF(1869 KB)

Accesses

Citation

Detail

段落导航
相关文章

/