阻振质量-刚度-阻尼材料配置同步优化的基座声学设计

王语嫣1,2,3,杨德庆1,2,3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 257-264.

PDF(1444 KB)
PDF(1444 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 257-264.
论文

阻振质量-刚度-阻尼材料配置同步优化的基座声学设计

  • 王语嫣1,2,3,杨德庆1,2,3
作者信息 +

Mass-stiffness-damping integrated design method for the acoustic optimization of mountings

  • WANG Yuyan1,2,3, YANG Deqing1,2,3
Author information +
文章历史 +

摘要

提出了一种通过配置阻振质量、优化构件尺寸和阻尼材料的基于声功率级约束的基座优化设计方法。不同于以往通过基座减振优化设计进而减小辐射噪声的方法,验证了基座声学优化设计对声隐身特性的直接效果。分别建立阻振质量单独优化、阻振质量-基座刚度同步优化、阻振质量-基座刚度-阻尼材料综合优化三种基座声学优化模型,比较了三种优化模型的优缺点。通过建立某算例基座声学动态代理模型,采用径向基函数(radial basis function,RBF)神经网络方法进行优化计算,得到满足设计要求的最优设计,拟合误差较小,结果较为可信。

Abstract

By configurating the vibration resistance mass, optimal component size and damping material, an acoustic optimization design method for base structures based on sound power level constraints was proposed.Different from the previous method of reducing the radiated noise through the vibration optimization design of base structures, the direct effect of acoustic optimization design on acoustic stealth characteristics was studied and verified.Three kinds of base acoustic optimization models, i.e., vibration resistance mass optimization, vibration resistance mass-base structure stiffness synchronization optimization and vibration resistance mass-base structure stiffness-damping material comprehensive optimization were explored respectively, and the advantages and disadvantages of the three optimization models were compared.By establishing the base acoustic dynamic agent model, and adopting the radial basis function (RBF) neural network method in the optimization calculation, the most optimal result meeting the requirements was obtained.The fitting error is small and the result is reliable.

关键词

基座 / 声学优化 / 辐射噪声 / 质量-刚度-阻尼配置 / 神经网络

Key words

base structure / acoustic optimization / radiated noise / mass-stiffness-damping configuration / neural network

引用本文

导出引用
王语嫣1,2,3,杨德庆1,2,3. 阻振质量-刚度-阻尼材料配置同步优化的基座声学设计[J]. 振动与冲击, 2021, 40(6): 257-264
WANG Yuyan1,2,3, YANG Deqing1,2,3. Mass-stiffness-damping integrated design method for the acoustic optimization of mountings[J]. Journal of Vibration and Shock, 2021, 40(6): 257-264

参考文献

[1]俞孟萨,林立.船舶水下噪声研究三十年的基本进展及若干前沿基础问题[J].船舶力学,2017,21(2):244-248.
YU Mengsa, LIN Li.Some progresses of underwater noise of ships in the recent thirty years and several new basic problems[J].Journal of Ship Mechanics, 2017,21(2):244-248.
[2]INOUE K, YAMANAKA M, KIHARA M.Optimum stiffener layout for the reduction of vibration and noise of gearbox housing [J].Journal of Mechanical Design, 2002,124(3): 518-523.
[3]刘见华, 金咸定, 李喆.多个阻振质量阻抑结构声的传递[J].上海交通大学学报, 2003(8):1205-1208.
LIU Jianhua, JIN Xianding, LI Ze.Impediment to structure borne propagation from several paralleling arranged vibration isolation mass[J].Journal of Shanghai Jiao Tong University, 2003(8):1205-1208.
[4]高森.基于声学设计与噪声预报的舰船基座结构设计与优化[J].舰船科学技术, 2018,40(14):13-15.
GAO Sen.The design and optimization of ship-base using acoustic design and noise prediction[J].Ship Science and Technology, 2018, 40(14):13-15.
[5]夏齐强,楼伟锋.双层壳体船舶动力舱结构声学设计优化[J].中国舰船研究, 2015,10(3):77-83.
XIA Qiqiang, LOU Weifeng.Structure-borne sound optimization design of ship power cabin with double cylindrical shell[J].Chinese Journal of Ship Research, 2015, 10(3):77-83.
[6]杨德庆, 柳拥军.自由阻尼层结构阻尼材料配置优化的拓扑敏度法[J].振动工程学报, 2003, 16(4):420-425.
YANG Deqing, LIU Yongjun.Topological sensitivity method for the optimal placement of unconstrained damping material in structures[J].Journal of Vibration Engineering,2003,16(4):420-425.
[7]杨康,杨德庆,吴秉鸿.高传递损失基座阻抗优化设计法[J].振动与冲击,2019,38(6):7-14.
YANG Kang, YANG Deqing, WU Binghong.Impedance optimization design on high transmission loss base structures[J].Journal of Vibration and Shock,2019, 38(6):7-14.
[8]王国治,胡玉超,仇远旺.基座参数对舰船结构振动与声辐射的影响[J].江苏科技大学学报(自然科学版), 2012, 26(3): 222-225.
WANG Guozhi, HU Yuchao, QIU Yuanwang.Effects of the base parameters on ship structural vibration and acoustic radiation[J].Journal of Jiangsu University of Science and Technology(Natural Science), 2012,26(3):222-225.
[9]王国治,胡玉超,仇远旺.舰船结构声学设计及噪声预报技术探讨[J].江苏科技大学学报(自然科学版), 2012, 26(4):327-331.
WANG Guozhi, HU Yuchao, QIU Yuanwang.Research on acoustic design of warship structure and prediction of underwater noise[J].Journal of Jiangsu University of Science and Technology(Natural Science), 2012,26(4):327-331.
[10]熊琳.试验基座阻抗对隔振装置隔振效果的影响[J].柴油机, 2007(4):39-41.
XIONG Lin.The influence of test base impedance on vibration isolation effect[J].Diesel Engine,2007(4):39-41.
[11]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2012.
[12]杨德庆,谢小龙, 郭万涛.钢-复合材料组合结构材料选型优化设计映射解法[J].应用力学学报, 2011, 28(1): 29-34.
YANG Deqing, XIE Xiaolong, GUO Wantao.Mapping function method for hybrid steel-composite materials-structure selection optimization design[J].Chinese Journal of Applied Mechanics, 2011, 28(1):29-34.
[13]成嘉鹏, 杨德庆, 易桂莲.水下圆柱壳声学代理模型优化设计[J].噪声与振动控制, 2016,36(3):1-5.
CHENG Jiapeng, YANG Deqing,YI Guilian.Surrogate model-based acoustic optimization design for underwater cylindrical shells[J].Noise and Vibration Control, 2016,36(3):1-5.
[14]吕志峰,张金生,王仕成,等.基于RBF神经网络的磁屏蔽性能计算方法[J].系统工程与电子技术, 2018,40(8): 1832-1838.
L Zhifeng, ZHANG Jinsheng, WANG Shicheng,et al.Calculation of magnetic shielding performance based on RBF neural network[J].Systems Engineering and Electronics,2018, 40(8):1832-1838.
[15]范家华,马磊,周攀,等.基于径向基神经网络的压电作动器建模与控制[J].控制理论与应用, 2016, 33(7):856-862.
FAN Jiahua, MA Lei, ZHOU Pan, et al.Modeling and control of piezoelectric actuator based on radial basis function neural network[J].Control Theory & Applications, 2016, 33(7):856-862.
[16]杨一,高社生,胡高歌.基于敏感度方差重要性的RBF神经网络结构优化算法[J].控制与决策, 2015,30(8):1393-1398.
YANG Yi, GAO Shesheng, HU Gaoge.Optimal algorithm for RBF neural network structure based on variance significance in output sensitivity[J].Control and Decision, 2015, 30(8):1393-1398.
[17]梁天新,杨小平,王良,等.记忆神经网络的研究与发展[J].软件学报, 2017, 28(11): 2905-2924.
LIANG Tianxin, YANG Xiaoping,WANG Liang,et al.Review on research and development of memory neural networks[J].Journal of Software,2017,28(11):2905-2924.
 

PDF(1444 KB)

Accesses

Citation

Detail

段落导航
相关文章

/