压电集成碳纳米管CNT增强功能梯度结构非线性建模与仿真

王雄1,高英山2,张顺琦2,薛婷3,陈敏4

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 278-282.

PDF(1066 KB)
PDF(1066 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 278-282.
论文

压电集成碳纳米管CNT增强功能梯度结构非线性建模与仿真

  • 王雄1,高英山2,张顺琦2,薛婷3,陈敏4
作者信息 +

Nonlinear modeling and simulation of piezoelectric integrated carbon nanotube reinforced functionally graded structures

  • WANG Xiong1, GAO Yingshan2, ZHANG Shunqi2, XUE Ting3, CHEN Min4
Author information +
文章历史 +

摘要

将碳纳米管(carbon nanotube,CNT)以梯度形式分布与基体材料结合,形成功能梯度(functionally graded,FG)结构。为了实现FG-CNT增强复合板在发生大变形时的准确计算,考虑四种典型的CNT分布形式,均匀分布、V型分布、O型分布和X型分布,建立基于Reissner-Mindlin板壳假设的大变形几何非线性有限元模型。该模型不仅包含了几何全非线性应变位移关系,还考虑了薄板结构法向发生大转角的情形。该研究与文献结果进行比较,验证模型的准确性;对FG-CNT增强复合板进行几何大变形非线性计算,分析CNT分布形式、CNT增强角度等因素对FG-CNT增强复合板刚度的影响。研究结果表明,CNT分布形式及增强角度对FG-CNT复合板的力学特征有显著的影响。

Abstract

The distribution of carbon nanotube (CNT) reinforcements in fundamental material may form  functionally graded CNT structures (FG-CNT).To simulate the FG-CNT structures at large deformation, four typical CNT distribution patterns were considered, i.e., uniform, V-shaped, O-shaped and X-shaped.A geometrically nonlinear model was built based on the plate and shell theory of Reissner-Mindlin hypothesis.The nonlinear model includes not only the fully geometrically nonlinear strain-displacement relations, but also the large rotations of the shell structure in normal direction.The proposed approach was first validated through the comparison with the literature results.Then, it was applied to solve the large deformations of FG-CNT reinforced composite structures, aiming at the study of the impact of CNT on the stiffness design of composite plates.The results illustrate that the CNT distributions and reinforcement orientations have a remarkable influence on the mechanical properties of FG-CNT composite plates.

关键词

碳纳米管(CNT) / 功能梯度(FG) / 几何非线性

Key words

carbon nanotube(CNT) / functional graded(FG) / geometrically nonlinear

引用本文

导出引用
王雄1,高英山2,张顺琦2,薛婷3,陈敏4. 压电集成碳纳米管CNT增强功能梯度结构非线性建模与仿真[J]. 振动与冲击, 2021, 40(6): 278-282
WANG Xiong1, GAO Yingshan2, ZHANG Shunqi2, XUE Ting3, CHEN Min4. Nonlinear modeling and simulation of piezoelectric integrated carbon nanotube reinforced functionally graded structures[J]. Journal of Vibration and Shock, 2021, 40(6): 278-282

参考文献

[1]贺丹, 乔瑞, 杨子豪.碳纳米管增强型功能梯度板的屈曲预测[J].复合材料学报, 2018, 35(10): 2804-2812.
HE Dan, QIAO Rui, YANG Zihao.Buckling prediction of carbon nanotubes reinforced functionally gradient plates[J].Journal of Composite Materials,2018,35(10):2804-2812.
[2]BHAVAR V, KATTIRE P, THAKARE S, et al.A review on functionally gradient materials (FGMs) and their applications[J].IOP Conference Series (Materials Science and Engineering), 2017, 229(1):012021.
[3]唐一科,郑富中,周兆英,等.基于单壁碳纳米管阵列的力敏传感器[J].机械工程学报, 2010, 46(18): 13-17.
TANG Yike, ZHENG Fuzhong, ZHOU Zhaoying, et al.Force sensor based on single wall carbon nanotube array[J].Journal of Mechanical Engineering, 2010, 46(18): 13-17.
[4]IIJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348): 56.
[5]SHEN H S.Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments[J].Composite Structures, 2009, 91(1): 9-19.
[6]HAN Y, ELLIOTT J.Molecular dynamics simulations of the elastic properties of polymer_carbon nanotube composites[J].Computational Materials Science, 2007,39(2): 315-323.
[7]YAS M H, HESHMATI M.Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load[J].Applied Mathematical Modelling, 2012, 36(4): 1371-1394.
[8]LEI Z X, LIEW K M, YU J L.Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method[J].Composite Structures, 2013,98:160-168.
[9]贺丹, 门亮.碳纳米管增强型复合材料功能梯度板的自由振动模型与尺度效应[J].计算力学学报, 2018, 35(3):326-330.
HE Dan, MEN Liang.Free vibration model and scale effect of carbon nanotube reinforced functionally gradient composite plates[J].Journal of Computational Mechanics, 2018, 35(3):326-330.
[10]姚小虎,韩强,辛浩.单壁碳纳米管非线性力学行为的数值模拟[J].物理学报,2008(1):329-338.
YAO Xiaohu, HAN Qiang, XIN Hao.Numerical simulation of nonlinear mechanical behavior of single wall carbon nanotubes [J].Acta Physica Sinica,2008(1):329-338.
[11]SHEN H S.Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments[J].Engineering Structures, 2016, 122(1): 174-183.
[12]KE L L, YANG J, KITIPORNCHAI S.Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams[J].Composite Structures, 2010, 92(3): 676-683.
[13]ZHANG L W, SONG Z G, LIEW K M.Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method[J].Composite Structures, 2015, 128: 165-175.
[14]KELESHTERI M M, ASADI H, WANG Q.Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation[J].Thin-Walled Structures, 2017, 120:203-214.
[15]KELESHTERI M M, ASADI H, WANG Q.Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method[J].Computer Methods in Applied Mechanics and Engineering, 2017, 325: 689-710.
[16]SETOODEH A R, SHOJAEE M, MALEKZADEH P.Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers[J].Computer Methods in Applied Mechanics and Engineering, 2018, 335:510-537.
[17]ZHANG S Q, SCHMIDT R.Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations[J].Composite Structures,2014, 112(1): 345-357.[18]ZHANG S Q, WANG Z X, QIN X S,et al.Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators[J].Composite Structures, 2016, 150: 62-72.
[19]LIEW K M, LEI Z X, ZHANG L W, Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review[J].Composite Structures,2015,120: 90-97.
[20]沈惠申.功能梯度碳纳米管增强复合材料结构建模与分析研究进展[J].力学进展,2016,46(1):478-505.
SHEN Huishen.Progress in structural modeling and analysis of functionally graded carbon nanotube reinforced composites [J].Progress in Mechanics, 2016,46(1):478-505.
[21]ARDESTANI M M, ZHANG L W, LIEW K M.Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates[J].Computer Methods in Applied Mechanics and Engineering, 2017,317:341-379.

PDF(1066 KB)

432

Accesses

0

Citation

Detail

段落导航
相关文章

/