基于Melnikov方法的分数阶Duffing振子混沌阈值解析研究

秦浩1,温少芳1,申永军2,邢海军2,王军2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 33-40.

PDF(1970 KB)
PDF(1970 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 33-40.
论文

 基于Melnikov方法的分数阶Duffing振子混沌阈值解析研究

  • 秦浩1,温少芳1,申永军2,邢海军2,王军2
作者信息 +

Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method

  • QIN Hao1,WEN Shaofang1,SHEN Yongjun2,XING Haijun2,WANG Jun2
Author information +
文章历史 +

摘要

研究了含有分数阶微分项的Duffing振子的分岔与混沌行为,利用等效刚度和等效阻尼的概念对分数阶微分项进行处理,将分数阶微分项等效成三角函数与指数函数的形式,用Melnikov方法分析了分数阶Duffing振子产生分岔与混沌的必要条件,得到了其解析结果。进行了解析解和数值解的比较,证明了解析结果的精确度,并通过仿真计算研究了分数阶的阶次和系数对系统产生混沌必要条件的影响。在数值模拟过程中,还发现分数阶Duffing振子中存在双稳态特性,从两个稳态解出发,随着外激励参数的变化都能通过倍周期分岔到达混沌的状态。通过分析系统的动力学响应验证了这一现象。

Abstract

The bifurcations and chaos of a Duffing oscillator with a fractional-order derivative term was studied.The equivalent stiffness and equivalent damping were used to deal with the fractional-order derivative, where the derivative term was made equivalent to a term in the form of trigonometric function and exponential function.Then, the Melnikov method was used to analyze the necessary conditions for the bifurcation and chaos generation of the fractional-order Duffing oscillator.The approximate analytical solution of the fractional-order Duffing oscillator was obtained.Finally, the comparison between the analytical solution and the numerical solution was investigated, and the accuracy of the analytical result was proved.The influences of fractional order and coefficient of the fractional-order derivative on the necessary condition of chaos were studied by simulation.Additionally, it is found that there is a bistability characteristic in the fractional-order Duffing oscillator. Starting from the two steady-state solutions, the system can reach the chaos state through the period-doubling bifurcation with the change of external excitation parameter f, which was then confirmed by analyzing its dynamic response.

关键词

Melnikov方法 / 分数阶微分 / Duffing振子 / 同宿轨

Key words

Melnikov method / fractional-order derivative / Duffing oscillator / heteroclinic orbit

引用本文

导出引用
秦浩1,温少芳1,申永军2,邢海军2,王军2.  基于Melnikov方法的分数阶Duffing振子混沌阈值解析研究[J]. 振动与冲击, 2021, 40(6): 33-40
QIN Hao1,WEN Shaofang1,SHEN Yongjun2,XING Haijun2,WANG Jun2. Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method[J]. Journal of Vibration and Shock, 2021, 40(6): 33-40

参考文献

[1]OLDHAM K B, SPANIER J.The fractional calculus: theory and applications of differentiation and integration to arbitrary order[M].New York: Academic Press, 1974.
[2]ROSS B.Brief history and exposition of the fundamental theory of fractional calculus[M].New York: Spring-Verlag, 1975.
[3]ROSS B.The development of fractional calculus 1695-1900[J].Historia Mathernatica, 1977,4(1): 75-89.
[4]PETRAS I.Fractional-order nonlinear system[M].Beijing: Higher Education Press, 2011.
[5]CAPONETTO R, EBRARY I.Fractional order systems : modeling and control applications[M].Singapore: World Scientific, 2010.
[6]MACHADO J T, KIRYAKOVA V, MAINARDI F.Recent history of fractional calculus[J].Communications in Nonlinear Science and Numerical Simulation, 2011,16(3): 1140-1153.
[7]LI C P, ZENG F H.Numerical methods for fractional calculus[M].New York: CRC Press, 2015.
[8]SUN H G, ZHANG Y, BALEANU D, et al.A new collection of real world applications of fractional calculus in science and engineering[J].Communications in Nonlinear Science & Numerical Simulation, 2018,64: 213-231.
[9]NAYFEH A H, MOOK A D.Nonlinear oscillations[M].New York: John Wiley & Sons, 1979.
[10]李占龙, 孙大刚, 宋勇,等.基于分数阶导数的黏弹性悬架减振模型及其数值方法[J].振动与冲击, 2016,35(16): 123-129.
LI Zhanlong, SUN Dagang, SONG Yong, et al.A fractional calculus-based vibration suppression model and its numerical solution for viscoelastic suspension[J].Journal of Vibration and Shock, 2016,35(16): 123-129.
[11]SHEN Y J, WANG L, YANG S P, et al.Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers[J].Journal of Vibration and Control, 2013,19(1): 143-160.
[12]KOVACIC I, BRENNAN M J.The duffing equation: nonlinear oscillators and their behaviour[M].New York: John Wiley & Sons, 2011.
[13]SHEN Y J, YANG S P, LIU X D.Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method[J].International Journal of Mechanical Sciences, 2006,48(11): 1256-1263.
[14]LI X H, HOU J Y, SHEN Y J.Slow-fast effect and generation mechanism of brusselator based on coordinate transformation[J].Open Physics, 2016,14(1): 261-268.
[15]PODLUBNY I.Fractional differential equations[M].London: Academic Press, 1999.
[16]DIETHELM K, FORD N J, FREED A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics, 2002,29(1/2/3/4): 3-22.
[17]FIRDOUS A, SHAH R, ABASS L D.Numerical solution of fractional differential equations using haar wavelet operational matrix method[J].International Journal of Applied and Computational Mathematics, 2017,3(3): 2423-2445.
[18]JAVIDI M, AHMAD B.Numerical solution of fractional partial differential equations by numerical Laplace inversion technique[J].Advances in Difference Equations, 2013,375(1): 1-18.
[19]TRIGEASSOU J C, MAAMRI N, SABATIER J, et al.A Lyapunov approach to the stability of fractional differential equations[J].Signal Processing, 2011,91(3): 437-445.
[20]QI Y F, PENG Y H.Stability analysis of fractional nonlinear dynamic systems with order lying in(1,2)[J].Chinese Quarterly Journal of Mathematics, 2019,34(2): 188-195.
[21]SHEN Y J, YANG S P, XING H J, et al.Primary resonance of duffing oscillator with fractional-order derivative[J].Communications in Nonlinear Science and Numerical Simulation, 2012,17(7): 3092-3100.
[22]SHEN Y J, WEI P, YANG S P.Primary resonance of fractional-order van der Pol oscillator[J].Nonlinear Dynamics, 2014,77(4): 1629-1642.
[23]申永军, 杨绍普, 邢海军.含分数阶微分的线性单自由度振子的动力学分析[J].物理学报, 2012,61(11): 158-163.
SHEN Yongjun, YANG Shaopu, XING Haijun.Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J].Acta Physica Sinica, 2012,61(11): 158-163.
[24]姜源,申永军,温少芳,等.分数阶达芬振子的超谐与亚谐联合共振[J].力学学报, 2017,49(5): 1008-1019.
JIANG Yuan, SHEN Yongjun, WEN Shaofang, et al.Super-harmonic and sub-harmonic simultaneous resonances of fractional-order Duffing oscillator [J].Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5): 1008-1019.
[25]顾晓辉,杨绍普,申永军,等.分数阶Duffing振子的组合共振[J].振动工程学报,2017,30(1): 28-32.
GU Xiaohui, YANG Shaopu, SHEN Yongjun, et al.Combined resonance of fractional Duffing oscillator[J].Journal of Vibration Engineering, 2017,30(1): 28-32.
[26]TABEJIEU L M A, NBENDJO B R N, WOAFO P.On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads[J].Chaos Solitons & Fractals, 2016,93: 39-47.
[27]SHEN Y J, WEN S F, YANG S P, et al.Analytical threshold for chaos in a Duffing oscillator with delayed feedbacks[J].International Journal of Non-Linear Mechanics, 2018,98: 1-8.
[28]SUN Z K, XU W, YANG X L, et al.Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback[J].Chaos, Solitons and Fractals, 2006,27(3): 705-714.
[29]WEN S F, CHEN J F, GUO S Q.Heteroclinic bifurcation behaviors of a Duffing oscillator with delayed feedback[J].Shock and Vibration, 2018,2018: 1-12.
[30]张思进,王紧业,文桂林.二自由度碰振准哈密顿系统亚谐轨道分析[J].振动与冲击, 2018,37(2): 102-107.
ZHANG Sijin, WANG Jinye, WEN Guilin.Subharmonic orbits analysis for a 2DOF vibro-impact quasi-Hamiltonian system[J].Journal of Vibration and Shock, 2018,37(2): 102-107.
[31]ABTAHI S M.Melnikov-based analysis for chaotic dynamics of spin-orbit motion of a gyrostat satellite[J].Proceedings of the Institution of Mechanical Engineers, 2019,233(4): 931-941.
[32]CHEN L C, HU F, ZHU W Q.Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping[J].Fractional Calculus and Applied Analysis, 2013,16(1): 189-225.
[33]GUCKENHEIMER J, HOLMES P.Nonlinear oscillations, dynamical system and bifurcations of vector fields[M].New York: Springer-Verlag, 1983.

PDF(1970 KB)

541

Accesses

0

Citation

Detail

段落导航
相关文章

/