[1]XIA T, DONG Y, XIAO L, et al.Recent advances in prognostics and health management for advanced manufacturing paradigms[J].Reliability Engineering & System Safety, 2018,178(1): 255-268.
[2]RAI A, UPADHYAY S H.A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J].Tribology International, 2016,96: 289-306.
[3]HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998,454(1971): 903-995.
[4]WU Z, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009,1(1): 1-41.
[5]WANG Z, ZHANG Q, XIONG J, et al.Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J].IEEE Sensors Journal, 2017,17(17): 5581-5588.
[6]AMIRAT Y, BENBOUZID M E H, WANG T, et al.EEMD-based notch filter for induction machine bearing faults detection[J].Applied Acoustics, 2018,133: 202-209.
[7]MIRIAM A, ANNA G.Classification of impact damage on a rubber-textile conveyor belt using Nave-Bayes methodology[J].Wear, 2018,414/415: 59-67.
[8]LI J, ZHANG X, ZHOU X, et al.Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model[J].Renewable Energy, 2019,132: 1076-1087.
[9]SAARI J, STRMBERGSSON D, LUNDBERG J, et al.Detection and identification of windmill bearing faults using a one-class support vector machine (SVM)[J].Measurement, 2019,137: 287-301.
[10]BEN ALI J, FNAIECH N, SAIDI L, et al.Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J].Applied Acoustics, 2015,89: 16-27.
[11]李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击, 2018,37(19): 124-131.
LI Heng, ZHANG Qing, QIN Xianrong, etal.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock, 2018,37(19): 124-131.
[12]MANJURUL ISLAM M M, KIM J M.Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines[J].Reliability Engineering & System Safety, 2019,184: 55-66.
[13]SHI X, LIANG Y, LEE H,et al.Improved elman networks and applications for controlling ultrasonic motors[J].Applied Artificial Intelligence, 2004,18(7): 603-629.
[14]SINGH N, SINGH P.A novel bagged Nave bayes-decision tree approach for multi-class classification problems[J].Journal of Intelligent and Fuzzy Systems, 2019,36(3): 2261-2271.
[15]LI L, HUANG Y, TAO J, et al.Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder[J].Measurement, 2018,130: 279-289.
[16]NIE Q, JIN L, FEI S, et al.Neural network for multi-class classification by boosting composite stumps[J].Neurocomputing, 2015,149: 949-956.
[17]LI L, WANG C, LI W, et al.Hyperspectral image classification by AdaBoost weighted composite kernel extreme learning machines[J].Neurocomputing, 2018,275: 1725-1733.