基于自适应引力算法的桥梁监测传感器优化布置

高博,柏智会,宋宇博

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 86-92.

PDF(2065 KB)
PDF(2065 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 86-92.
论文

基于自适应引力算法的桥梁监测传感器优化布置

  • 高博,柏智会,宋宇博
作者信息 +

Optimal placement of sensors in bridge monitoring based on an adaptive gravity search algorithm

  • GAO Bo,BAI Zhihui,SONG Yubo
Author information +
文章历史 +

摘要

针对桥梁健康监测中传感器布置优化问题,提出了一种基于自适应引力算法的传感器优化布置方法。以模态置信准则为基础,构造满足传感器优化布置的适应度函数;针对引力搜索算法开发能力不足,对衰减因子α进行了自适应改进。搜索初期α较小,粒子以较大步长进行全局搜索,增强了算法的搜索效率;搜索后期α较大,粒子以较小的步长进行局部搜索,提高了算法的搜索能力,避免落入局部极值点。改进后的自适应引力算法通过双重编码的方式,使算法可以解决离散型的传感器布置问题;以马水河大桥为例,验证算法的可行性。结果表明,改进后的算法有很好的寻优能力,能够准确高效的确定传感器优化位置。

Abstract

In order to achieve sensor placement optimization in bridge health monitoring, an optimal sensor placement method based on an adaptive gravity search algorithm was proposed.Based on the modal confidence criterion, the fitness function for optimal sensor placement was constructed.In view of the insufficient development capability of the conventional gravitational search algorithm, the adaptive adjustment strategy for the attenuation factor α was proposed.The initial attenuation factor of the search was rather small, and the particles performed global search with a large step size to enhance the search efficiency of the algorithm.Then, the search had a large attenuation factor in the late stage, and the particles performed local search in a small step size, so that the search ability of the algorithm was improved and the falling into local extreme points was avoided.The improved adaptive gravity search algorithm was used to solve the discrete sensor placement problem by the way of dual-structure coding.Finally, an example of the Mashui River Bridge was taken to verify the effectiveness of the proposed method.The results show that the improved algorithm is of good ability to optimize the position of sensors accurately and efficiently.

关键词

自适应引力算法 / 传感器优化布置 / 双重编码

Key words

adaptive gravity search algorithm / optimal sensor placement / dual-structure coding method

引用本文

导出引用
高博,柏智会,宋宇博. 基于自适应引力算法的桥梁监测传感器优化布置[J]. 振动与冲击, 2021, 40(6): 86-92
GAO Bo,BAI Zhihui,SONG Yubo. Optimal placement of sensors in bridge monitoring based on an adaptive gravity search algorithm[J]. Journal of Vibration and Shock, 2021, 40(6): 86-92

参考文献

[1]韩大建,谢峻.大跨度桥梁健康监测技术的近期研究进展[J].桥梁建设,2002(6):69-73.
HAN Dajian, XIE Jun.State of arts of health monitoringt echniques for long span bridges[J].Bridge Construction,2002(6):69-73.
[2]KAMMER D C,YAO L.Enhancement of on-orbit modal I dentification of large space structures through sensor placement[J].Journal of Sound and Vibration, 1994, 171(1):119-139.
[3]CARNE T G , DOHRMANN C R .A modal test design strategy for model correlation[C]// Proceedings of 13th  International Modal Analysis Conference.New York:Union College, 1995.
[4]PENNY J E T , FRISWELL M I , GARVEY S D .Automatic choice of measurement locations for dynamic testing[J].AIAA Journal, 2012, 32(2):407-414.
[5]DINH-CONG D , DANG-TRUNG H , NGUYEN-THOI T .An efficient approach for optimal sensor placement and damage identification in laminated composite structures[J].Advances in Engineering Software, 2018, 119:48-59.
[6]BRUGGI M , MARIANI S .Optimization of sensor placement to detect damage in flexible plates[J].Engineering Optimization, 2013, 45(6):659-676.
[7]WANG T , CELIK O , CATBAS F N , et al.A frequency and spatial domain decomposition method for operational strain modal analysis and its application[J].Engineering Structures, 2016, 114:104-112.
[8]JIN H, XIA J, WANG Y Q.Optimal sensor placement for space modal identification of crane structures based on an improved harmony search algorithm[J].Journal of Zhejiang University Science A, 2015,16(6):464-477.
[9]YI T H, LI H N, SONG G , et al.Optimal sensor placement for health monitoring of high-rise structure using adaptive monkey algorithm[J].Structural Control and Health Monitoring, 2015, 22(4):667-681.
[10]杨振伟,周广东,伊廷华,等.基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J].工程力学,2019,36(3):63-70.
YANG Zhenwei,ZHOU Guangdong,YI Tinghua,et al.Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J].Engineering Mechanics, 2019, 36(3) :63-70.
[11]黄民水,朱宏平,李炜明.基于改进遗传算法的桥梁结构传感器优化布置[J].振动与冲击,2008,27(3):82-86.
HUANG Minshui,ZHU Hongping, LI Weiming.Optimal sensor placement on bridge structure based on genetic algorithm[J].Journal of Vibration and Shock,2008,27(3):82-86.
[12]赵建华, 张陵, 孙清.利用粒子群算法的传感器优化布置及结构损伤识别研究[J].西安交通大学学报, 2015, 49 (1):79-85.
ZHAO Jianhua, ZHANG Ling, SUN Qing.Optimal placement of sensors for structural damage identification using improved particle swarm optimization[J].Journal of Xi’an Jiaotong University, 2015, 49 (1) :79-85.
[13]RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S.GSA:a gravit-ational search algorithm[J].Information Sciences,2009,179(13):2232-2248.
[14]王宇,黄胜,廖全蜜,等.基于引力搜索算法的舱室分布方案设计[J].哈尔滨工程大学学报,2016,37(1):48-52.
WANG Yu, HUANG Sheng, LIAO Quanmi, et al.Design of the lay out of ship cabins using a gravitational search algorit hm[J].Journal of Harbin Engineering University, 2016,37 (1):48-52.
[15]SAUCER T W, SIH V.Optimizing nanophotonic cavity designs with the gravitational search algorithm[J].Optics Express,2013,21(18):20831-20836.
[16]NIU P F, LIU C, LI P F, et al.Optimized support vector regression model by improved gravitational search algorithm for flatness pattern recognition[J].Neural Computing and Applications, 2015,26(5):1167-1177.
[17]CHEN F, ZHOU J, WANG C, et al.A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching[J].Energy, 2017, 121(15):276-291.
[18]段向阳, 王永生, 苏永生.基于奇异值分解的信号特征提取方法研究[J].振动与冲击, 2009, 28 (11) :30-33.DUAN Xiangyang, WANG Yongsheng, SU Yongsheng.Feature extraction methods based on singular value decomposition[J].Journal of Vibration and Shock, 2009,28(11):30-33.
[19]李鹏, 徐伟娜, 周泽远, 等.基于改进万有引力搜索算法的微网优化运行[J].中国电机工程学报, 2014, 34 (19):3073-3079.
LI Peng, XU Weina, ZHOU Zeyuan, et al.Optimal operation of microgrid based on improved gravitational search algorithm[J].Proceedings of the CSEE,2014,34(19):3073-3079 .
[20]张志文,刘军,周冠东,等.基于改进二进制万有引力算法的含DG配电网故障定位[J].电力系统及其自动化学报,2018,30(4):30-34.
ZHANG Zhiwen, LIU Jun, ZHOU Guandong, et al.Fault location in distribution network with distributed generations based on improved binary gravitational search algorithm [J].Proceedings of the CSU-EPSA ,2018,30(4):30-34.
[21]伊廷华,张旭东,李宏男.基于自适应猴群算法的传感器优化布置方法研究[J].振动与冲击,2013,32 (23):285-290.
YI Tinghua,ZHANG Xudong, LI Hongnan.Optimal sensor placement based on adaptive monkey algorithm[J].Journal of Vibration and Shock,2013,32(23):285-290.
[22]刘勇,马良.二进制中心引力优化算法及其在非线性0-1规划中的应用[J].计算机应用研究,2017,34(8):2372-2375.
LIU Yong, MA Liang.Binary central force optimization algorithm and its application in nonlinear 0-1 programming[J].Application Research of Computers,2017,34(8):2372-2375.
[23]王常亮.桥梁结构健康监测传感器比选及优化配置研究[D].武汉:武汉理工大学,2010.

PDF(2065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/