非负矩阵分解在地震作用下结构随机响应分析中的应用

徐梓栋,王浩,梁瑞军

振动与冲击 ›› 2021, Vol. 40 ›› Issue (7) : 188-192.

PDF(1011 KB)
PDF(1011 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (7) : 188-192.
论文

非负矩阵分解在地震作用下结构随机响应分析中的应用

  • 徐梓栋,王浩,梁瑞军
作者信息 +

Application of nonnegative matrix factorization in structural random response analysis under earthquake action

  • XU Zidong, WANG Hao, LIANG Ruijun
Author information +
文章历史 +

摘要

地震动作为一类典型的非平稳随机过程可由演变谱刻画其能量的时-频分布。然而,演变谱的时-频耦合特性却限制了经典谱表示法的模拟效率。为提高非平稳地震动模拟效率,简化非平稳地震作用下结构随机响应分析,提出了基于非负矩阵分解(nonnegative matrix factorization,NMF)的地震动演变谱解耦方案,使结构在非平稳地震作用下的响应计算简化为各项均匀调制激励下的结构随机响应叠加。分析结果表明,基于非负矩阵分解的地震动演变谱解耦具有良好的精度,快速傅里叶变换技术的引入提高了经典谱表示法的模拟效率,模拟样本自相关函数与目标值吻合良好,非平稳地震作用下结构随机响应频域分析得到简化。

Abstract

Ground motion is a typical nonstationary stochastic process, and its energy time-frequency distribution can be described by evolution spectrum. However, time-frequency coupled characteristics of evolution spectrum limit the simulation efficiency of the classical spectral representation method. Here,in order to improve the efficiency of non-stationary ground motion simulation, and simplify the structural random response analysis under non-stationary earthquake, a decoupling scheme of ground motion evolution spectrum based on non-negative matrix factorization was proposed to simplify the calculation of structural response under non-stationary earthquake as superposition of structural random responses under each uniform modulated excitation. Results showed that the decoupling of the evolution spectrum of ground motion based on non-negative matrix factorization has good accuracy; introducing fast Fourier transformation (FFT) technology improves the simulation efficiency of the classical spectral representation method, the auto-correlation function of simulation samples agrees well with the target value, and the frequency domain analysis of structure random responses under the action of nonstationary earthquake is simplified.

关键词

演变功率谱 / 非负矩阵分解(NMF) / 快速傅里叶变换 / 地震动模拟 / 随机响应分析

Key words

evolution power spectrum / non-negative matrix factorization / fast Fourier transformation (FFT) / ground motion simulation / stochastic response analysis

引用本文

导出引用
徐梓栋,王浩,梁瑞军. 非负矩阵分解在地震作用下结构随机响应分析中的应用[J]. 振动与冲击, 2021, 40(7): 188-192
XU Zidong, WANG Hao, LIANG Ruijun. Application of nonnegative matrix factorization in structural random response analysis under earthquake action[J]. Journal of Vibration and Shock, 2021, 40(7): 188-192

参考文献

[1]田玉基, 杨庆山. 基于相位差谱的空间相关非平稳地震动场的模拟[J]. 计算力学学报, 2010, 27(5): 828-833.
TIAN Yuji, YANG Qingshan. Phase-difference-based simulation of spatial correlated and non-stationary seismic ground motions[J]. Chinese Journal of Computational Mechanics, 2010, 27(5): 828-833.
[2]刘章军, 曾波, 吴林强. 非平稳地震动过程模拟的谱表示-随机函数方法[J]. 振动工程学报, 2015, 28(3): 411-417.
LIU Zhangjun, ZENG Bo, WU Linqiang. Simulation of non-stationary ground motion by spectral representation and random functions[J]. Journal of Vibration Engineering, 2015, 28(3): 411-417.
[3]SHINOZUKA M, JAN C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1): 111-128.
[4]PRIESTLEY M B. Evolutionary spectra and non-stationary processes[J]. Journal of the Royal Statistical Society,  1965, 27(2): 204-237.
[5]DEODATIS G. Non-stationary stochastic vector processes: seismic ground motion applications[J]. Probabilistic Engineering Mechanics, 1996, 11(3): 149-167.
[6]LI Y L, KAREEM A. Simulation of multivariate nonstationary random processes by FFT[J]. Journal of Engineering Mechanics, 1991, 117(5): 1037-1058.
[7]HUANG G Q. Application of proper orthogonal decomposition in fast Fourier transform-assisted multivariate nonstationary process simulation[J]. Journal of Engineering Mechanics, 2015, 141(7): 04015015.
[8]LI Y L, TOGBENOU K, XIANG H Y, et al. Simulation of non-stationary wind velocity field on bridges based on Taylor series[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 117-127.
[9]LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
[10]SEUNG H S, LEE D D. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
[11]林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.
[12]CACCIOLA P, DEODATIS G. A method for generating fully non-stationary and spectrum-compatible ground motion vector processes[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 351-360.
[13]SPANOS P D, KOUGIOUMTZOGLOU I A. Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination[J]. Probabilistic Engineering Mechanics, 2012, 27(1): 57-68.
[14]欧进萍, 王光远. 结构随机振动[M]. 北京: 高等教育出版社, 1998.
[15]刘章军, 方兴. 平稳地震动过程的随机函数-谱表示模拟[J]. 振动与冲击, 2013, 32(24): 6-10.
LIU Zhangjun, FANG Xing. Simulation of stationary ground motion with random functions and spectral representation[J]. Journal of Vibration and Shock, 2013, 32(24): 6-10.
[16]贾宏宇, 郑史雄, 阳栋, 等. 非平稳多维多点虚拟激励法的快速模拟方法[J]. 振动与冲击, 2013, 32(18): 108-112.
JIA Hongyu, ZHENG Shixiong, YANG Dong, et al. Fast simulation technique for non-stationary multi-dimensional and multi-support pseudo excitation method[J]. Journal of Vibration and Shock, 2013, 32(18): 108-112.
[17]李雪平, 李栋泓, 魏鹏, 等. 非平稳随机地震响应约束下的桁架结构形状与拓扑优化[J]. 振动与冲击, 2017, 36(9): 138-145.
LI Xueping, LI Donghong, WEI Peng, et al. Shape and topology optimization of truss structures under non-stationary stochastic seismic excitations[J]. Journal of Vibration and Shock, 2017, 36(9): 138-145.

PDF(1011 KB)

Accesses

Citation

Detail

段落导航
相关文章

/