以一类典型的静电驱动双边电容型微谐振器为研究对象,基于全局分岔理论,研究微结构吸合不稳定的机理;在此基础上,在系统直流偏置电压上引入线性时滞速度反馈,对系统复杂动力学行为实施控制。通过引入独立参数,得出系统异宿轨道的精确解析表达,进而利用Melnikov方法预测微结构的异宿分岔条件,从而获得引起微结构吸合不稳定的交流电压阈值。数值算例与理论解析结果的吻合验证了时滞速度反馈控制能有效抑制该类双边电容型微结构吸合不稳定以及混沌等复杂动力学行为,该研究在优化控制微谐振器性能方面具有潜在的应用价值。
Abstract
Based on the global bifurcation theory, the mechanism of pull-in instability of a typical electrostatic driven bilateral capacitive micro-resonator was studied. Then, a linear time-delay velocity feedback was introduced into the system’s DC bias voltage to control complex dynamic behavior of the system. By introducing independent parameters, the exact analytical expression of the system’s heteroclinic orbit was obtained. Furthermore, Melnikov method was used to predict heteroclinic bifurcation conditions of the microstructure to obtain its AC voltage threshold causing its pull-in instability. It was shown that the numerical results agree well with the theoretical analytical ones to verify the time-delay velocity feedback control being able to effectively suppress pull-in instability, chaos and other complex dynamic behaviors of this kind of bilateral capacitive micro structures; the study results have potential application value for optimal controlling the performance of micro resonators.
关键词
微谐振器 /
吸合不稳定 /
时滞速度反馈控制 /
异宿分岔 /
安全盆
{{custom_keyword}} /
Key words
micro-resonator /
pull-in instability /
time delay velocity feedback /
heteroclinic bifurcation /
safe basin
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]YOUNIS M I.MEMS linear and nonlinear statics and dynamics[M]. New York: Springer, 2011.
[2]BAI G F, SUN Y Q. Application and research of MEMS sensor in gait recognition algorithm[J]. Cluster Computing, 2018, 22(2): 9059-9067.
[3]ZEGADLO K, HUNG N V, KONOTOP V V, et al. Route to chaos in a coupled microresonator system with gain and loss[J].Nonlinear Dynamics, 2019, 97(1):559-569.
[4]韩建鑫. 一类双极板静电驱动微梁谐振器的非线性振动及其控制研究[D]. 天津:天津大学,2016.
[5]尚慧琳, 胡立力, 文永蓬. 一类静电驱动双边电容型微谐振器振动系统的复杂动力学特性研究[J]. 振动与冲击, 2018, 37(24):18-23.
SHANG Huilin, HU Lili, WEN Yongpeng.Complex dynamics of the vibrating system of a micro mechanical resonator with electrostatic forces on both sides[J]. Journal of Vibration and Shock, 2018, 37 (24): 18-23.
[6]MOJAHEDI M, AHMADIAN M T, FIROOZBAKHSH K. Effects of casimir and van der waals forces on the pull-in instability of the nonlinear micro and nano-bridge gyroscopes[J]. International Journal of Structural Stability and Dynamics, 2014,14(2): 1350059.
[7]ALSALEEM F M, YOUNIS M I, OUAKAD H M. On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators[J]. Journal of Micromechanics and Microengineering, 2009, 19(4):045013.
[8]OUAKAD H M. Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass[J]. Microsystem Technologies, 2020, 26(2):573-582.
[9]RUZZICONI L, RAMINI A, YOUNIS M, et al. Theoretical prediction of experimental jump and pull-In dynamics in a MEMS sensor[J]. Sensors, 2014,14(9): 17089-17111.
[10]ALSALEEM F M, YOUNIS M I, RUZZICONI L. An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 794-806.
[11]NAJAR F, NAYFEH A H, ABDEL-RAHMAN E M, et al. Dynamics and global stability of beam-based electrostatic microactuators[J]. Journal of Vibration and Control, 2010, 16(5): 721-748.
[12]MASRI K M, SHAO S, YOUNIS M I, et al. Delayed feedback controller for microelectromechanical systems resonators undergoing large motion[J]. Journal of Vibration and Control, 2015,21(13): 2604-2615.
[13]MESTROM R M C, FEY R H B, NIJMEIJER H. Phase feedback for nonlinear MEM resonators in oscillator circuits[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(4):423-433.
[14]LENCI S, REGA G. Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam[J]. Journal of Micromechanics and Microengineering, 2006, 16(2):390-401.
[15]LIU C X, YAN Y, WANG W Q. Resonances and chaos of electrostatically actuated arch micro/nanoresonators with time delay velocity feedback[J]. Chaos, Solitons and Fractals, 2020, 131: 109512.
[16]李伟雄. 双驱动双检测微陀螺刚度非线性下的动力学特性及其时滞反馈研究[D].天津:天津理工大学, 2019.
[17]SHANG H L.Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback[J]. Nonlinear Dynamics, 2017, 90: 171-183.
[18]HAN J X, ZHANG Q C, WANG W, et al. Stability and perturbation analysis of a one-degree-of-freedom doubly clamped microresonator with delayed velocity feedback control[J]. Journal of Vibration and Control, 2018, 24(15):2454-3470.
[19]CAO Y Y, CHUNG K W, XU J. A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method[J]. Nonlinear Dynamics, 2011, 64(3):221-236.
[20]HAGHIGHI H S, MARKAZI A H D. Chaos prediction and control in MEMS resonators[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(10):3091-3099.
[21]ROCS,OREANU C, STERPU M. Approximations of the heteroclinic orbits near a double-zero bifurcation with symmetry of order two:application to a Liénard equation[J]. International Journal of Bifurcation and Chaos, 2019, 29(6): 1950074.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}