基于ANSYS的气液两相流海洋立管流固耦合特性分析

田晓洁1,谢大帅1,刘贵杰1,谢迎春1,邓伟2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (7) : 260-267.

PDF(3317 KB)
PDF(3317 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (7) : 260-267.
论文

基于ANSYS的气液两相流海洋立管流固耦合特性分析

  • 田晓洁1,谢大帅1,刘贵杰1,谢迎春1,邓伟2
作者信息 +

Analysis of fluid-structure interaction characteristics of gas-liquid two-phase flow marine riser based on ANSYS

  • TIAN Xiaojie1,  XIE Dashuai1,  LIU Guijie1,  XIE Yingchun1,  DENG Wei2
Author information +
文章历史 +

摘要

运用ANSYS软件对气液两相流海洋立管进行了流固耦合特性分析,包括模态分析和动力学分析。模态分析研究了有无流固耦合存在时立管振动模态的变化以及流体边界条件对立管固有频率和阵型的影响;同时,将仿真分析同DNV公式求解的固有频率进行了对比验证。动力学分析研究了单、双向流固耦合振动分析,并将单、双向流固耦合进行了对比分析,同时考虑了立管支承方式、流体边界条件对立管振动的影响,提出了立管减振措施。分析结果对海洋立管的优化设计和运行的可靠性提供了重要的理论意义。

Abstract

Here, the software ANSYS was used to perform fluid-structure interaction characteristics analysis of a gas-liquid two-phase flow marine riser including modal analysis and dynamic analysis. Modal analysis was used to study change of vibration modes of the riser with and without fluid-structure interaction and effects of fluid boundary conditions on natural frequencies and modal shapes of the riser. Then, natural frequencies solved using simulation analysis were compared with those solved using DNV formula to verify the correctness of simulation. Dynamic analysis was used to study fluid-structure interaction vibration analyses in single direction and double ones, and contrastively analyze both of them considering effects of riser support mode and fluid boundary conditions on riser vibration. Finally, the vibration reduction measures for riser were proposed. The study results provided an important theoretical basis for optimal design and operation reliability of marine risers.

关键词

气液两相流 / 海洋立管 / 流固耦合 / 模态分析 / 动力学分析

Key words

gas-liquid two-phase flow / marine riser / fluid-structure interaction / modal analysis / dynamic analysis

引用本文

导出引用
田晓洁1,谢大帅1,刘贵杰1,谢迎春1,邓伟2. 基于ANSYS的气液两相流海洋立管流固耦合特性分析[J]. 振动与冲击, 2021, 40(7): 260-267
TIAN Xiaojie1, XIE Dashuai1, LIU Guijie1, XIE Yingchun1, DENG Wei2. Analysis of fluid-structure interaction characteristics of gas-liquid two-phase flow marine riser based on ANSYS[J]. Journal of Vibration and Shock, 2021, 40(7): 260-267

参考文献

[1]许超洋. 气液两相流混输管道振动分析研究[D]. 青岛: 中国石油大学, 2007.
[2]AN C, SU J. Dynamic behavior of pipes conveying gas-liquid two-phase flow[J]. Nuclear Engineering and Design, 2015, 292: 204-212.
[3]ORTIZ-VIDAL L E, CASTILLO D G, VALVERDE Q. Theoretical study on the dynamic behavior of pipes conveying gas-liquid flow[J]. MATEC Web of Conferences, 2018, 148: 1004-1008.
[4]MONTOYA-HERNNDEZ D J, VZQUEZ-HERNNDEZ A O, CUAMATZI R, et al. Natural frequency analysis of a marine riser considering multiphase internal flow behavior[J]. Ocean Engineering, 2014, 92: 103-113.
[5]宋军舰. 气液两相流管道振动检测研究[D]. 青岛: 中国石油大学, 2011.
[6]张钦杰. 气液两相流管道振动机理研究[D]. 青岛: 中国石油大学, 2009.
[7]唐有波. 海洋立管内部气液段塞流动特性及其流致振动研究[D]. 成都: 西南石油大学, 2017.
[8]唐兴亮, 管友海, 西文喜, 等. 基于流固耦合含腐蚀缺陷管道模态分析[J]. 化工设备与管道, 2017, 54(1): 65-68.
TANG Xingliang, GUAN Youhai, XI Wenxi, et al. Modal analysis of pipelines with corrosive defects based on fluid-solid coupling[J]. Chemical Equipment and Pipes, 2017, 54(1): 65-68.
[9]郭海燕, 董文乙, 娄敏. 海中输流立管涡激振动试验研究及疲劳寿命分析[J]. 中国海洋大学学报(自然科学版), 2008(3): 503-507.
GUO Haiyan, DONG Wenyi, LOU Min. Experimental study and fatigue life analysis of vortex-induced vibration of marine vertical pipeline[J]. Journal of Ocean University of China(Natural Science), 2008(3): 503-507.
[10]CHATJIGEORGIOU I K. Hydroelastic response of marine risers subjected to internal slug-flow[J]. Applied Ocean Research, 2017, 62: 1-17.
[11]马晓旭, 田茂诚, 张冠敏, 等. 水平管内气液两相流诱导振动的数值研究[J]. 振动与冲击, 2016, 35(16): 204-210.
MA Xiaoxu, TIAN Maocheng, ZHANG Guanmin, et al. Numerical investigation on gas-liquid two-phase flow-induced vibration in horizontal tube[J]. Journal of Vibration and Shock, 2016, 35(16): 204-210.
[12]付强, 习毅, 朱荣生, 等. 含气率对AP1000核主泵影响的非定常分析[J]. 振动与冲击, 2015, 34(6): 132-136.
FU Qiang, XI Yi, ZHU Rongsheng, et al. AP1000 nuclear main pump internal unsteady analysis under gas-liquid two phase condition[J]. Journal of Vibration and Shock, 2015, 34(6): 132-136.
[13]Det Norske Veritas. Structural analysis of piping systems: DNV-RP-F101[S]. Norway: Elendom AS, 2008.

PDF(3317 KB)

Accesses

Citation

Detail

段落导航
相关文章

/