具有时滞反馈控制的非线性主动悬架系统的稳定性、分岔和混沌

邵素娟1,任传波2,荆栋2,颜廷浩2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (7) : 281-290.

PDF(3538 KB)
PDF(3538 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (7) : 281-290.
论文

具有时滞反馈控制的非线性主动悬架系统的稳定性、分岔和混沌

  • 邵素娟1,任传波2,荆栋2,颜廷浩2
作者信息 +

Stability, bifurcation and chaos of nonlinear active suspension system with time delay feedback control

  • SHAO Sujuan1, REN Chuanbo2, JING Dong2, YAN Tinghao2
Author information +
文章历史 +

摘要

研究了具有时滞反馈控制的非线性主动悬架系统模型,该模型考虑了悬架弹簧和阻尼的非线性特性。运用广义Sturm准则推导了时滞无关稳定区域的临界增益和稳定性开关的临界时滞。在不同稳定性区间内选取参数组合进行数值模拟,验证理论分析的有效性。在动力学方程的基础上,利用分岔图、庞加莱映射图和时域图,研究了在路面激励下的悬架系统的非线性动力学行为。结果表明,在增益系数和阻尼系数g~ζ1平面内存在一个小的参数区间来实现时滞无关稳定性,并且区间范围随着悬架阻尼系数的增加而增大。当受控系统不具有时滞无关稳定性时,系统会随着时滞的变化而发生稳定性切换,这些稳定性开关对应时滞跨越临界值时发生的Hopf分岔。数值仿真验证了理论分析的正确性。时滞作为分岔参数,观察到系统由准周期运动通往混沌运动的途径:准周期环面破裂。

Abstract

Here, a nonlinear active suspension system model with time delay feedback control was studied considering nonlinear characteristics of suspension spring and damping. The critical gain of delay independent stable region and the critical delay of stability switch were derived by using the generalized Sturm criterion. The effectiveness of the theoretical analysis was verified using numerical simulation with chosen parametric combinations in different stability intervals. Based on dynamic equations, nonlinear dynamic behavior of the suspension system under road excitation was studied by using bifurcation diagram, Poincare map and time domain diagram. The results showed that there is a small parameter interval in gain coefficient-damping coefficient  plane to realize delay independent stability, and the interval range increases with increase in suspension damping coefficient; when the controlled system has no delay independent stability, the system can have stability switching with change of time delay; these stability switches correspond to Hopf bifurcations when time delay crosses critical value; numerical simulation verifies the correctness of the theoretical analysis; when time delay is taken as a bifurcation parameter, the system’s path from quasi-periodic motion to chaotic one is observed, i.e., rupture of quasi-periodic torus.

关键词

非线性主动悬架系统 / 时滞反馈控制 / 稳定性开关 / 分岔 / 混沌

Key words

nonlinear active suspension systems / time delay feedback control / stability switch / bifurcation / chaos

引用本文

导出引用
邵素娟1,任传波2,荆栋2,颜廷浩2. 具有时滞反馈控制的非线性主动悬架系统的稳定性、分岔和混沌[J]. 振动与冲击, 2021, 40(7): 281-290
SHAO Sujuan1, REN Chuanbo2, JING Dong2, YAN Tinghao2. Stability, bifurcation and chaos of nonlinear active suspension system with time delay feedback control[J]. Journal of Vibration and Shock, 2021, 40(7): 281-290

参考文献

[1]WANG Z H, HU H Y. Stability switches of time-delayed dynamic systems with unknown parameters [J]. Journal of Sound and Vibration, 2000, 233(2):215-233.
[2]HU H Y, WANG Z H. Dynamics of controlled mechanical systems with delayed feedback [M]. Heidelberg: Springer, 2002.
[3]张智勇. 含有时滞的汽车主动悬挂系统的减振控制[D]. 青岛:中国海洋大学, 2010.
[4]朱坤, 任传波, 王飞, 等. 含时滞反馈控制的1/4车辆模型减振研究[J]. 山东理工大学学报(自然科学版), 2016(2):31-35.
ZHU Kun, REN Chuanbo, WANG Fei, et al. Research on vibration of 1/4 car model with time delay feedback control[J]. Journal of Shandong University of Technology(Natural Science Edition), 2016(2):31-35.
[5]刘林. 时滞减振机理及其在车辆中的应用[D]. 淄博:山东理工大学,2012.
[6]SIEWE M S. Resonance, stability and period-doubling bifurcation of a quarter-car model excited by the road surface profile[J]. Physics Letters A, 2010, 374(13/14):1469-1476.
[7]NAIK R D, SINGRU P M. Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16(8):3397-3410.
[8]TAFFO G I K, SIEWE M S, TCHAWOUA C. Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control[J]. Chaos Solitons and Fractals, 2016,87:226-239.
[9]ZHOU S H, LI Y M, REN Z H, et al. Nonlinear dynamic analysis of a unilateral vibration vehicle system with structural nonlinearity under harmonic excitation[J]. Mechanical Systems and Signal Processing, 2019, 116:751-771.
[10]BOREIRY M, EBRAHIMI-NEJAD S, MARZBANRAD J. Sensitivity analysis of chaotic vibrations of a full vehicle model withmagnetorheological damper[J]. Chaos, Solitons & Fractals, 2019, 127: 428-442.
[11]STPN G. Retarded dynamical systems: stability and characteristic functions[M]. New York:Longman Scientific and Technical, 1989.
[12]OLGAC N, SIPAHI R. An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems[J]. IEEE Transactions on Automatic Control, 2002, 47(5): 793-797.
[13]徐鉴,陆启韶.非自治时滞反馈控制系统的周期解分岔和混沌[J]. 力学学报, 2003, 35(4):443-451.
XU Jian, LU Qishao. Bifurcation and chaos due to time delay in a delayed control non-autonomous system[J]. Acta Mechanica Sinica, 2003, 35(4):443-451.
[14]赵艳影,徐鉴.时滞非线性动力吸振器的减振机理[J].力学学报,2008, 40(1):98-106.
ZHAO Yanying, XU Jian. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1):98-106.
[15]张文丰. 汽车主动底盘非线性动力学研究[D]. 南京:南京航空航天大学, 2002.
[16]陈栋华, 靳晓雄. 轮胎刚度和阻尼非线性模型的解析研究[J]. 中国工程机械学报, 2004, 2(4):408-412.
CHEN Donghua, JIN Xiaoxiong. Analytic study on nonlinear model for tire stiffness and damping[J]. Chinese Journal of Construction Machinery, 2004, 2(4):408-412.
[17]王绪旺, 丰星星, 陈晓宇,等. 考虑汽车悬架非线性参数的平顺性分析及优化[C]//中国力学大会.杭州:CCTAM,2019.
 

PDF(3538 KB)

1822

Accesses

0

Citation

Detail

段落导航
相关文章

/