二维复合压电型表面波声子晶体带隙特性

陈长红,田苗,孙美静

振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 247-254.

PDF(1849 KB)
PDF(1849 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 247-254.
论文

二维复合压电型表面波声子晶体带隙特性

  • 陈长红,田苗,孙美静
作者信息 +

Surface acoustic wave bandgaps in a two-dimensional composite piezoelectric phononic crystal

  • CHEN Changhong, TIAN Miao, SUN Meijing
Author information +
文章历史 +

摘要

设计了在镍圆柱体底部添加薄环氧树脂并沉积在铌酸锂基底的二维复合压电型声子晶体。通过有限元法计算了该结构的能带结构、分析了其带隙特性。计算结果显示:通过引入环氧树脂来减小散射体的有效弹性模量,从而降低了声表面波(SAW)完全带隙,同时打开了多条SAW方向带隙。计算了传输损失来验证带隙的存在性且讨论了其传输特性。利用布里渊区高对称点X处不同本征模态的位移场分析了带隙的形成机理。此外,还研究了共振体几何参数对SAW完全带隙、XM方向SAW带隙特性的影响,研究发现,随环氧树脂厚度的增加,在XM方向出现了一条宽为158 MHz的宽禁带。研究结果为设计基于声子晶体的电声设备提供了参考。

Abstract

A two-dimensional composite piezoelectric phononic crystal was proposed, which is composed of a thin epoxy at the bottom and a nickel pillar at the top and deposited on the lithium niobate substrate. The dispersion relation of the structure was calculated by a finite element method, the bandgap characteristics of the composite piezoelectric phononic crystal were also carefully analyzed. The results show that the effective elastic modulus of the scatterer is reduced by introducing epoxy, so that the complete band gap of the surface acoustic waves (SAWs) is reduced and multiple SAW directional band gaps are opened. The transmission spectra were calculated to verify the existence of the band gap, and its transmission characteristics were discussed. The mechanism of band gap formation was analyzed by using the displacement fields of different eigenmodes at the edge X of Brillouin zone. Furthermore, the effect of the geometric parameters of the pillar on the SAW complete band gap and XM direction SAW band gap characteristics were also studied. It is found that, as the thickness of epoxy increases, multi-band gaps in the XM direction will merge to form a wide band gap of 158 MHz. The research content provides a reference for designing of electroacoustic equipment based on phononic crystal.

关键词

声子晶体 / 声表面波(SAWs) / 复合柱体 / 带隙

Key words

phononic crystals / surface-acoustic-waves(SAWs) / composite pillar / band gap

引用本文

导出引用
陈长红,田苗,孙美静. 二维复合压电型表面波声子晶体带隙特性[J]. 振动与冲击, 2021, 40(8): 247-254
CHEN Changhong, TIAN Miao, SUN Meijing. Surface acoustic wave bandgaps in a two-dimensional composite piezoelectric phononic crystal[J]. Journal of Vibration and Shock, 2021, 40(8): 247-254

参考文献

[1]ASSOUAR M, OUDICH M. Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal[J]. Applied Physics Letters, 2011, 99(12): 123505.
[2]陈圣兵,韩小云,王刚,等.具有压电分流电路的声子晶体杆振动带隙研究[J].振动与冲击,2011,30(4):64-67.
CHEN Shengbing, HAN Xiaoyun, WANG Gang, et al. Vibration bandgaps of a phononic rod with piezoelectric shunting circuits[J]. Journal of Vibration and Shock, 2011, 30(3): 64-67.
[3]ASSOUAR M B, SUN J H, LIN F S, et al. Hybrid phononic crystal plates for lowering and widening acoustic band gaps[J]. Ultrasonics, 2014, 54(8): 2159-2164.
[4]JIN Y, FERNEZ N, PENNEC Y, et al. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars[J]. Physical Review B, 2016, 93(5): 054109.
[5]YANKIN S, TALBI A, DU Y, et al. Finite element analysis and experimental study of surface acoustic wave propagation through two-dimensional pillar-based surface phononic crystal[J]. Journal of Applied Physics, 2014, 115: 244508.
[6]COLOMBI A, ROUX P, GUENNEAU S, et al. Forests as a natural seismic metamaterial: rayleigh wave bandgaps induced by local resonances[J]. Scientific Reports, 2016, 6: 19238.
[7]ZHANG D B, ZHAO J F, BONELLO B, et al. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates[J]. AIP Advances, 2016, 6(8): 085021.
[8]ZHAO J F, BONELLO B, BOYKO O. Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonator[J]. Physical Review B, 2016, 93(17): 174306.
[9]GUO Y, SCHUBERT M, DEKORSY T. Finite element analysis of surface modes in phononic crystal waveguides[J]. Journal of Applied Physics, 2016, 119: 124302.
[10]CAI F D, LI H L, TIAN Y H, et al. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals[J]. Japanese Journal of Applied Physics, 2018, 57(3): 034001.
[11]GRACZYKOWSKI B, MIELCAREK S, TRZASKOWSKA A, et al. Tuning of a hypersonic surface phononic band gap using a nanoscale two-dimensional lattice of pillars[J]. Physical Review B, 2012, 86(8): 085426.
[12]YUDISTIRA D, BOES A, DJAFARI-ROUHANI B, et al. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling[J]. Applied Physics Letters, 2014, 113(21): 215503.
[13]YANG G Y, DU J K, HUANG B, et al. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer[J]. AIP Advances, 2017, 7(4): 045206.
[14]KYRIMI V, ASH B J, NASH G R. A metasurface comprising spiral shaped local resonators for surface acoustic waves[J]. Journal of Physics D(Applied Physics), 2019, 52(34): 345306.
[15]BENCHABANE S, KHELIF A, RAUCH J Y, et al. Evidence for complete surface wave band gap in a piezoelectric phononic crystal[J]. Physical Review E, 2006, 73(6): 065601.
[16]SUN J H, YU Y H. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals[J]. Applied Physics A-Materials Science & Processing, 2018, 124: 165.
[17]HSU J C, LIN F S. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars[J]. Japanese Journal of Applied Physics, 2018, 57(7S1): 07LB01.
[18]TANAKA Y, TAMURA S. Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer[J]. Physical Review B,1999, 60(19):13294-13297.
[19]ACHAOUI Y, LAUDE V, BENCHABANE S, et al. Local resonances in phononic crystals and in random arrangements of pillars on a surface[J]. Journal of Applied Physics, 2013, 114(10): 104503.
[20]YUDISTIRA D, PENNEC Y, ROUHANI B D, et al. Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate[J]. Applied Physics Letters, 2012, 100(6): 061912.
[21]ASH B J, WORSFOLD S R, VUKUSIC P, et al. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves[J].Nature Communications, 2017, 8:174.
[22]COFFY E, EUPHRASIE S, ADDOUCHE M, et al. Evidence of a broadband gap in a phononic crystal strip[J]. Ultrasonics, 2017, 78:51-56.
[23]GRACZYKOWSKI B, ALZINA F, GOMIS-BRESCO J, et al. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals[J]. Applied Physics Letters,2016,119(2):025308.
[24]GAROVA E A, MARADUDIN A A, MAYER A P. Interaction of Rayleigh waves with randomly distributed oscillators on the surface[J]. Physical Review B, 1999, 59(20):13291.

PDF(1849 KB)

Accesses

Citation

Detail

段落导航
相关文章

/