基于小波分析的近断层地震动最强速度脉冲识别方法与应用

赵天次,赵伯明

振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 41-49.

PDF(1733 KB)
PDF(1733 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 41-49.
论文

基于小波分析的近断层地震动最强速度脉冲识别方法与应用

  • 赵天次,赵伯明
作者信息 +

Algorithm and application of the strongest velocity pulse identification of near-fault ground motion based on wavelet analysis

  • ZHAO Tianci,ZHAO Boming  
Author information +
文章历史 +

摘要

基于小波分析方法提出一种最强速度脉冲识别算法,该算法考虑了地面运动的三个正交分量,并使用连续小波变换来识别具有最大能量的速度脉冲方向。应用该算法对NGA-Weat 2数据库中6 288条地震动记录进行分析,并与现有的脉冲识别方法的对比可知,该算法扩展了脉冲识别结果。建立脉冲峰值、周期与震级和断层距的统计模型,结果表明:最强速度脉冲的峰值随断层距的增加而减小,随着震级的增大而增大;与垂直或平行断层分量相比,最强速度脉冲分量具有更大的能量和更小的脉冲峰值。对比该模型与Shahi等(2014)的平面内最强速度脉冲模型,该模型的预测值在震级较小时大于Shahi等的模型,随着震级的增大二者差异逐渐减小,这是因为大震级下最强速度脉冲在水平面内所占的比例较大。

Abstract

An algorithm for the identification of the strongest velocity pulse was proposed based on wavelet analysis, which considers three orthogonal components of the ground motion. The algorithm uses continuous wavelet transforms of three orthogonal components to identify the orientation of the velocity pulse that has the largest energy. The proposed algorithm analyzed 6 288 strong motion records of NGA-West 2 database and expanded the identification results. The statistical models of pulse amplitude, period with magnitude, and fault distance were established. The results show that the peak of the strongest velocity pulse gradually reduces with the increase of the fault distance, while gradually rises with the magnitude. Comparing with the fault normal or fault parallel orientation component, the strongest velocity pulse component has larger energy and smaller peak velocity. Compared with the Shahi, et al(2014) model, the predicted value of the proposed model is larger when the magnitude is small. With the strongest velocity pulses occupying more in the horizontal direction under a large magnitude, the difference between the two models gradually decreases.

关键词

地震动 / 速度脉冲 / 小波 / 最强方向分量 / 近断层 / 脉冲参数

Key words

ground motion / velocity pulse / wavelet / strongest pulse orientation component / near-fault / pulse parameters

引用本文

导出引用
赵天次,赵伯明. 基于小波分析的近断层地震动最强速度脉冲识别方法与应用[J]. 振动与冲击, 2021, 40(8): 41-49
ZHAO Tianci,ZHAO Boming. Algorithm and application of the strongest velocity pulse identification of near-fault ground motion based on wavelet analysis[J]. Journal of Vibration and Shock, 2021, 40(8): 41-49

参考文献

[1]BERTERO V V, MAHIN S A, HERRERA R A. Aseismic design implications of near-fault San Fernando earthquake records[J]. Earthquake Engineering & Structural Dynamics, 1978,6(1): 31-42.
[2]SOMERVILLE P G. Magnitude scaling of the near fault rupture directivity pulse[J]. Physics of the Earth & Planetary Interiors, 2003,137(1): 201-212.
[3]BRAY J D, RODRIGUEZ-MAREK. A characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics & Earthquake Engineering, 2004,24(11): 815-828.
[4]李新乐, 朱晞. 近断层地震动等效速度脉冲研究[J]. 地震学报, 2004,26(6): 634-643.
LI Xinle, ZHU Xi. Study on equivalent velocity pulse of near-fault ground motion [J]. Acta Seismologica Sinica, 2004,26(6): 634-643.
[5]刘启方, 袁一凡, 金星, 等. 近断层地震动的基本特征[J]. 地震工程与工程振动, 2006,26(1): 1-10.
LIU Qifang, YUAN Yifan, JIN Xing, et al. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration, 2006,26(1): 1-10.
[6]夏春旭,柳英洲,柳春光.桥梁墩柱在近断层水平多脉冲地震动作用下响应特征分析[J].振动与冲击, 2017,36(2): 95-100.
XIA Chunxu, LIU Yingzhou, LIU Chunguang. Characteristic response analysis of bridge piers under multi-pulse near-fault earthquake excitation[J]. Journal of Vibration and Shock, 2017,36(2): 95-100.
[7]张凡,李帅,颜晓伟,等.近断层脉冲型地震动作用下大跨斜拉桥地震响应分析[J]. 振动与冲击, 2017,36(21): 163-172.
ZHANG Fan, LI Shuai, YAN Xiaowei, et al. Effects of near-fault pulse-type ground motions on the seismic responses of a long-span cable-stayed bridge[J]. Journal of Vibration and Shock, 2017,36(21): 163-172.
[8]郑勤飞,闫维明,罗振源,等.脉冲型地震作用下独塔自锚式悬索桥碰撞响应试验研究[J]. 振动与冲击, 2019,38(4): 151-157.
ZHENG Qinfei, YAN Weiming, LUO Zhenyuan, et al. An experimental study on pounding response of a self-anchored suspension bridge with single tower under pulse-like ground motions[J]. Journal of Vibration and Shock, 2019,38(4): 151-157.
[9]王亚楠,杜永峰,胡高兴.脉冲型地震下隔震结构的等强度位移需求谱研究[J]. 振动与冲击, 2018,37(1): 85-89.
WANG Yanan, DU Yongfeng, HU Gaoxing. Constant-strength displacement demand spectra of base-isolated structures under pulse-like ground motions[J]. Journal of Vibration and Shock, 2018,37(1): 85-89.
[10]BAKER J W. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007,97(5): 1486-1501.
[11]谢俊举, 温增平, 李小军, 等. 基于小波方法分析汶川地震近断层地震动的速度脉冲特性[J]. 地球物理学报, 2012,55(6): 1963-1972.
XIE Junju, WEN Zengping, LI Xiaojun, et al. Analysis of velocity pulse characteristics of near-fault ground motions in Wenchuan earthquake based on wavelet method[J]. Chinese Journal of Geophysics, 2012,55(6): 1963-1972.
[12]SHAHI S K, BAKER J W. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bulletin of the Seismological Society of America, 2014,104(5): 2456-2466.
[13]王宇航. 近断层区域划分及近断层速度脉冲型地震动模拟[D]. 成都:西南交通大学, 2015.
[14]刘铁林, 孙宇城, 张柔佳. PEER地震动数据库中含速度脉冲近场地震记录[J]. 防灾减灾工程学报, 2018,38(2): 367-372.
LIU Tielin, SUN Yucheng, ZHANG Roujia. Near-field earthquake records with velocity pulse in PEER ground motion database [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018,38(2): 367-372.
[15]韦韬, 赵凤新, 张郁山. 近断层速度脉冲的地震动特性研究[J]. 地震学报, 2006, 28(6): 629-637.
WEI Tao, ZHAO Fengxin, ZHANG Yushan. Study on ground motion characteristics of near-fault velocity pulses[J]. Acta Seismologica Sinica, 2006,28(6): 629-637.
[16]KALKAN E, KUNNATH S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2012,22(2): 367-390.
[17]陈波, 谢俊举, 温增平. 汶川地震近断层地震动作用下结构地震响应特征分析[J]. 地震学报, 2013,35(2): 250-261.
CHEN Bo, XIE Junju, WEN Zengping. Seismic response characteristics analysis of structures under the near-fault ground motion of Wenchuan earthquake[J]. Acta Seismologica Sinica, 2013,35(2): 250-261.
[18]赵晓芬. 近断层地震动速度脉冲的识别方法及对隔震结构的影响研究[D]. 哈尔滨:中国地震局工程力学研究所, 2015.
[19]HOWARD J K, TRACY C A, BURNS R G. Comparing observed and predicted directivity in near-source ground motion[J]. Earthquake Spectra, 2005,21(4): 1063-1092.
[20]BOORE D M. Orientation-independent measures of ground motion[J]. Bulletin of the Seismological Society of America, 2006,96(4A): 1502-1511.
[21]SHAHI S K, BAKER J W. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 2011,101(2): 742-755.
[22]SHAHI S K, BAKER J W. A probabilistic framework to include the effects of near-fault directivity in seismic hazard assessment[R]. Berkeley: University of California, 2013.
[23]李明,谢礼立,翟长海. 近断层脉冲型地震动重要参数的识别方法[J]. 世界地震工程, 2009,25(4): 1-6.
LI Ming, XIE Lili, ZHAI Changhai. Identification method for important parameters of near-fault pulse ground motion[J]. World Earthquake Engineering, 2009,25(4): 1-6.
[24]ZHAI C H, CHANG Z W, LI S, et al. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bulletin of the Seismological Society of America, 2013,103(5): 2591-2603.
[25]常志旺. 近场脉冲型地震动的量化识别及特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[26]HAYDEN C P, BRAY J D, ABRAHAMSON N A. Selection of near-fault pulse motions[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2014,140(7): 04014030.
[27]CHANG Z W, SUN X D, ZHAI C H, et al. An improved energy-based approach for selecting pulse-like ground motions[J]. Earthquake Engineering Structural Dynamics, 2016,45(14): 2405-2411.
[28]SOMERVILLE P G, SMITH N F, GRAVES R W, et al. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters, 1997,68(1): 199-222.
[29]CHOPRA A K, CHINTANAPAKDEE C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions[J]. Earthquake Engineering & Structural Dynamics, 2010,30(12): 1769-1789.
[30]MALLAT S G. A wavelet tour of signal processing: Vol. 2[M]. San Diego: Academic Press, 1997.
[31]MENUN C, FU Q. An analytical model for near-fault groundmotions and the response of SDOF systems[C]// 7th U.S. National Conference on Earthquake Engineering. Boston: NCEE, 2002.
[32]MAVROEIDIS G P. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003,93(3): 1099-1131.
[33]AKKAR S, YAZGAN U, GLKAN P. Drift estimates in frame buildings subjected to near-fault ground motions[J]. Journal of Structural Engineering, 2005,131(7): 1014-1024.
[34]曲哲, 师骁. 汶川地震和鲁甸地震的脉冲型地震动比较研究[J]. 工程力学, 2016,33(8): 150-157.
QU Zhe, SHI Xiao. Comparative study of pulsed ground motions in Wenchuan earthquake and Ludian earthquake[J]. Engineering Mechanics, 2016,33(8): 150-157.
[35]谢俊举, 李小军, 温增平. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学, 2017,34(8): 194-211.
XIE Junju, LI Xiaojun, WEN Zengping. Amplification of response spectrum by large pulse near-fault velocity[J]. Engineering Mechanics, 2017,34(8): 194-211.
[36]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquakes[J]. Journal of Structural Engineering, 1987,113(8): 1709-1724.
[37]HALL J F, HEATON T H, HALLING M W, et al. Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 1995,11(4): 569-605.
[38]MAKRIS N. Rigidity-plasticity-viscosity: can electrorheological dampers protect base-isolated structures from near-source ground motions[J]. Earthquake Engineering & Structural Dynamics, 2015,26(5): 571-591.
[39]蒲武川,梁瑞军,戴枫禹,等.基于三角函数的脉冲型近场地震动的近似模型[J]. 振动与冲击, 2017,36(4): 208-213.
PU Wuchuan, LIANG Ruijun, DAI Fengyu, et al. An analytical model for approximating pulse-like near-fault ground motions[J]. Journal of Vibration and Shock, 2017,36(4): 208-213.
[40]王亚楠, 于娇, 杜永峰. 脉冲型地震下地震动强度指标与基础隔震结构位移响应相关性研究[J].振动与冲击, 2019,38(10): 262-268.
WANG Yanan, YU Jiao, DU Yongfeng. Correlation between ground motion intensity indexes and displacement responses of a base-isolated structure under pulse-type ground motions[J]. Journal of Vibration and Shock, 2019,38(10): 262-268.
[41]黎璟,杨华平,钱永久,等.近断层脉冲型地震动的残余位移系数谱研究[J]. 振动与冲击, 2019,38(10): 169-176.
LI Jing, YANG Huaping, QIAN Yongjiu, et al. Residual displacement coefficient spectrum for structures under near-fault pulse-like ground motions[J]. Journal of Vibration and Shock, 2019,38(10): 169-176.
[42]SOMERVILLE P G. Development of an improved representation of near fault ground motions [C]// Proceedings of SMIP98 Seminar on Utilization of Strong Motion Data. Oakland: SMIP, 1998.
[43]TANG Y, ZHANG J. Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions[J]. Soil Dynamics & Earthquake Engineering, 2011,31(1): 59-76.

PDF(1733 KB)

Accesses

Citation

Detail

段落导航
相关文章

/