基于主动阻尼的屈曲梁准零刚度隔振技术研究

王云峰1,吴爽2,李占芯3,徐硕3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 79-84.

PDF(1521 KB)
PDF(1521 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 79-84.
论文

基于主动阻尼的屈曲梁准零刚度隔振技术研究

  • 王云峰1,吴爽2,李占芯3,徐硕3
作者信息 +

A study on vibration isolation based on a buckled beam quasi-zero-stiffness isolator and active damping

  • WANG Yunfeng1,WU Shuang2,LI Zhanxin3,XU Shuo3
Author information +
文章历史 +

摘要

准零刚度(QZS)隔振系统具有高静刚度-低动刚度的特性,能够对低频振动进行有效抑制,而主动阻尼能够显著降低系统的共振峰值同时保持系统高频传递特性不变。因此,将准零刚度隔振系统与主动阻尼相结合,可以有效提升系统的超低频隔振性能。以屈曲梁准零刚度隔振器为研究对象,基于系统动力学模型,引入主动阻尼控制策略,通过理论分析研究了主动阻尼对屈曲梁准零刚度隔振系统传递率的影响,并利用SIMULINK工具开展扫频、正弦和随机扰动条件下的屈曲梁准零刚度-主动阻尼隔振系统仿真研究。仿真结果表明:在超低频段(≤0.1 Hz)该系统能够产生8~32 dB的隔振效果;在高频段(≥10 Hz)隔振效率不低于36 dB,且对随机扰动响应的隔振效率为36 dB。

Abstract

The quasi-zero-stiffness (QZS) isolator has character of high-static-low-dynamic-stiffness, and can be employed to suppress low-frequency vibration. Active damping control can reduce the resonance peak with keeping the transmissibility in high frequency band unchanged. It is effective to improve the performance of a QZS isolator by employing active damping control. In this paper, a buckled beam QZS isolator was adopted, and based on its dynamic model the active damping control was engaged to build an active-damping-QZS isolation system. The relationship between the isolation system transmissibility and active damping was studied by a theoretical method. Dynamic simulation was carried out in the SIMULINK software to study the performance of the isolation system in three conditions of sweep frequency disturbance, sinusoidal disturbance, and random disturbance. Simulation results indicate that in low-frequency-region (≤0.1 Hz) the amplitude of vibration was suppressed 8-32 dB, while in the high-frequency-region (≥10 Hz) the effect of vibration vilation was not less than 36 dB. In the random base disturbance condition, the vibration RMS was reduced 36 dB.

关键词

屈曲梁 / 准零刚度(QZS) / 主动阻尼 / 隔振

Key words

buckled beam / quasi-zero-stiffness(QZS) / active damping / vibration isolation

引用本文

导出引用
王云峰1,吴爽2,李占芯3,徐硕3. 基于主动阻尼的屈曲梁准零刚度隔振技术研究[J]. 振动与冲击, 2021, 40(8): 79-84
WANG Yunfeng1,WU Shuang2,LI Zhanxin3,XU Shuo3. A study on vibration isolation based on a buckled beam quasi-zero-stiffness isolator and active damping[J]. Journal of Vibration and Shock, 2021, 40(8): 79-84

参考文献

[1]AGLIETTI G S, LANGLEY R S, GABRIEL S B. Model building and verification for active control of micro-vibrations with probabilistic assessment of the effects of uncertainties[J]. Journal of Mechanical Engineering Science, 2004,218(4): 389-399.
[2]LIU C C, JING X J, DALEY S, et al. Recent advances in micro-vibration isolation[J]. Mechanical System and Signal Processing, 2015,56(57): 55-80.
[3]徐道临,周杰,周加喜,等.碟形橡胶准零刚度隔振器的设计和特性分析[J]. 湖南大学学报(自然科学报), 2015,42(8): 22-28.
XU Daolin, ZHOU Jie, ZHOU Jaxi, et al. Design and analysis of a disc rubber vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Hunan University (Natural Science), 2015,42(8): 22-28.
[4]HAO Z F, CAO Q J. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2015,340(1): 61-79.
[5]ALABUZHEV P M, ALABUZHEV P, RIVIN E I. Vibration protecting and measuring systems with quasi-zero stiffness[M]. New York: Hemisphere Publishing Corporation, 1989.
[6]ZHOU N, LIU K. A tunable high-static-low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010,329(9): 1254-1273.
[7]CARRELLA A, BRENNAN M J, WATERS T P, et al. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration, 2008,315(3): 712-720.
[8]HUANG X C, CHEN Y, HUA H X, et al. Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study[J]. Journal of Sound and Vibration, 2015,345(1): 178-196.
[9]PLATUS D L. Negative stiffness mechanism vibration isolation systems[J]. Vibration Control in Microelectronics, Optics, and Metrology, 1991,1619(1): 44-54.
[10]BENJAMIN A F, DAVID W S, MICHAEL R H, et al. Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems[J]. Journal of Vibration and Acoustics, 2014,136(3): 1-12.
[11]王云峰,李博,王利桐. 两端固支屈曲梁准零刚度隔振器的微振动隔振性能分析[J].振动与冲击, 2018,37(15): 124-129.
WANG Yunfeng, LI Bo, WANG Litong. Micro-vibration isolation performance of a clamped-clamped buckled beam quasi-zero-stiffness isolator[J]. Journal of Vibration and Shock, 2018,37(15): 124-129.
[12]KARNOPP D. Active and semi-active vibration isolation[J]. Journal of Mechanical Design, 1995,117(13): 409-423.
[13]ELLIOTT S J, SERRAND M. Multichannel feedback control for the isolation of base-excited vibration[J]. Journal of Sound and Vibration, 2000,234(4): 681-704.
[14]BEARD A M, SCHUBERT D W, VON FLOTOW A H. Practical product implementation of an active/passive vibration isolation system[J]. Vibration Monitoring and Control, 1994,2264(1): 38-49.
[15]RAHIM M A, WATERS T P, RUSTIGHI E. Active damping control for vibration isolation of high-static-low-dynamic-stiffness isolators[C]// International Conference on Noise and Vibration Engineering. Leuven: ISMA, 2014.

PDF(1521 KB)

Accesses

Citation

Detail

段落导航
相关文章

/