基于多体动力学与离散元耦合的惯性圆锥破碎机动态性能研究

程加远,任廷志,张子龙,刘大伟,金昕

振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 98-109.

PDF(2766 KB)
PDF(2766 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (8) : 98-109.
论文

基于多体动力学与离散元耦合的惯性圆锥破碎机动态性能研究

  • 程加远,任廷志,张子龙,刘大伟,金昕
作者信息 +

A study on dynamic performance of an inertia cone crusher based on multi-body dynamics and discrete element coupling method

  • CHENG Jiayuan,REN Tingzhi,ZHANG Zilong,LIU Dawei,JIN Xin
Author information +
文章历史 +

摘要

针对惯性圆锥破碎机工作时振动剧烈和产品指标差等缺陷开展研究,提出了一套结合理论分析、基于多体动力学与离散元法耦合模型仿真及试验验证的系统分析方法。该模型精确地分析了惯性圆锥破碎机的机械运动、非线性接触及矿料加载响应;对GYP 1200型惯性圆锥破碎机实施相应的工业试验,采用了两种不同的驱动转速,对破碎机的位移振幅、功率消耗、产品粒度分布及生产率等性能进行了数据采集与仿真结果进行详细比较,验证了耦合模型和分析方法的有效性;预测了物料颗粒流动行为及衬板破碎力分布规律;详细讨论了不同驱动转速和定锥质量等关键参数对破碎机动态性能的影响,总结了位移振幅、产品粒度分布及单位能耗随关键参数的变化规律。耦合仿真和结论可为改善衬板磨损、降低制造成本及优化工作参数等提供一定的依据。

Abstract

Aiming at the defect of an inertia cone crusher such as violent vibration and poor product indexes, a systematic analysis method combining theoretical analysis, multi-body dynamics, and a discrete element coupling method, and test verification was proposed. For model verification, the industrial tests were conducted on a GYP 1200 inertia cone crusher. Two different drive speeds were included in the experiments, and the testing devices were used to sample crusher performances such as displacement amplitude, power draw, product size distribution and throughput capacity in order to verify the validity of the coupling model and the analysis method. Furthermore, the behavior of the particle flow and the crushing force distribution in the concave were predicted. Finally, the influence of key parameters such as different drive speed and fixed cone mass on the dynamic performance of the crusher was discussed in detail. The coupling simulations and study results provided a basis for the improvement of linings wear, lowering manufacturing cost, and obtaining optimal operation parameters.

关键词

惯性圆锥破碎机 / 多体动力学 / 离散元法 / 试验验证 / 动态性能

Key words

inertia cone crusher / multi-body dynamic / discrete element method / experiment verification / dynamic performance

引用本文

导出引用
程加远,任廷志,张子龙,刘大伟,金昕. 基于多体动力学与离散元耦合的惯性圆锥破碎机动态性能研究[J]. 振动与冲击, 2021, 40(8): 98-109
CHENG Jiayuan,REN Tingzhi,ZHANG Zilong,LIU Dawei,JIN Xin. A study on dynamic performance of an inertia cone crusher based on multi-body dynamics and discrete element coupling method[J]. Journal of Vibration and Shock, 2021, 40(8): 98-109

参考文献

[1]张子龙,任廷志,程加远,等.考虑粒形转化特性的圆锥破碎机层压破碎行为研究[J].机械工程学报,2017,53(16): 173-180.
ZHANG Zilong, REN Tingzhi, CHENG Jiayuan, et al. Research on the inter-particle breakage of cone crusher considering the characteristics of particle shape transformation[J]. Journal of Mechanical Engineering, 2017,53(16): 173-180.
[2]SAFRONOV A N, KAZAKOV S V, SHISHKIN Y V. New trends in inertia cone crusher studies[J]. Mineral Processing Journal, 2012(5): 40-42.
[3]夏晓鸥,蔡美峰.惯性圆锥破碎机的动力学特性分析[J]. 湖南科技大学学报(自然科学版), 2008,23(2): 28-31.
XIA Xiaoou, CAI Meifeng. Dynamics analysis of inertia cone crusher[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2008,23(2): 28-31.
[4]SAVOV S, NEDYALKOV P, MININ I. Crushing force theoretical examination in one cone inertial crusher[J]. Journal of Multidisciplinary Engineering Science and Technology, 2015,2(3): 430-437.
[5]BABAEV R M, KISHCHENKO V L. The effect of KID-1500 inertia cone crusher parameters upon preset crushed stone size fraction yield[J]. Mineral Processing Journal, 2012(1): 22-24.
[6]王晓波,罗秀建,夏晓鸥,等.惯性圆锥破碎机动锥的旋转响应[J]. 有色金属(选矿部分), 2015(3): 69-86.
WANG Xiaobo, LUO Xiujian, XIA Xiaoou, et al. Rotating characteristics of inertial cone crusher’s moving cone[J]. Nonferrous Metals (Mineral Processing Section), 2015(3): 69-86.
[7]卫一川.惯性圆锥破碎机有限元分析及优化[D]. 太原: 太原科技大学,2015.
[8]MITREV R, SAVOV S. A theoretical experimental approach for elasto-damping parameters estimation of cone inertial crusher mounting[J]. Facta Universitatis, Series (Mechanical Engineering), 2017,15(1): 73-83.
[9]KAZAKOV S V, SHISHKIN E V. Upon dynamic analysis of vibratory cone crusher based on three-mass system[J]. Mineral Processing Journal, 2016(4): 43-47.
[10]赵月静,秦志英,彭伟.考虑物料层作用的振动圆锥破碎机动力学分析[J]. 振动与冲击,2011,30(9): 232-236.
ZHAO Yuejing, QIN Zhiying, PENG Wei. Dynamic analysis of vibrating cone crusher considering the effect of materials layers[J]. Journal of Vibration and Shock, 2011,30(9): 232-236.
[11]EVERTSSON C M, QUIST J. Cone crusher modelling and simulation using DEM[J]. Minerals Engineering, 2016,85: 92-105.
[12]LI H, MCDOWELL G, LOWNDES I. Discrete element modelling of a rock cone crusher[J]. Powder Technology, 2014,263: 151-158.
[13]CLEARY P W, SINNOTT M D, MORRISON R D. Analysis of cone crusher performance with changes in material properties and operating conditions using DEM[J]. Minerals Engineering, 2017,100: 49-70.
[14]XU L. An approach for calculating the dynamic load of deep groove ball bearing joints in planar multibody systems[J]. Nonlinear Dynamics, 2012,70(3): 2145-2161.
[15]CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1980,30(4): 331-336.
[16]NIKRAVESH P E, HAUG E J. Generalized coordinate partitioning for analysis of mechanical systems with nonholonomic constraints[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1983,105(3): 379-384.
[17]ORIN D E, MCGHEE R B, VUKOBRATOVIC M, et al. Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods[J]. Mathematical Biosciences, 1972,43(1/2): 107-130.
[18]FLORES P, LEINE R, GLOCKER C. Modeling and analysis of rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach[J]. Multibody System Dynamics, 2009,23(2): 165-190.
[19]CHA H, CHOI S, HAN S, et al. Stick-slip algorithm in a tangential contact force model for multi-body system dynamics[J]. Journal of Mechanical Science and Technology, 2011,25(7): 1678-1694.
[20]CHUNG Y C, WU C W, KUO C Y, et al. A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress[J]. Applied Mathematical Modelling, 2019,74: 540-568.
[21]POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004,41: 1329-1364.
[22]GROOT R D, STOYANOV D S. Close packing density and fracture strength of adsorbed polydisperse particle layers[J]. Soft Matter, 2011,7(10): 4750-4761.
[23]MA Y, HUANG H. DEM analysis of failure mechanisms in the intact Brazilian test[J]. International Journal of Rock Mechanics & Mining Sciences, 2018,102: 109-119.
[24]HANLEY K J, SULLIVAN C O, OLIVEIRA J C, et al. Application of Taguchi methods to DEM calibration of bonded agglomerates[J]. Powder Technology, 2011,210(3): 230-240.
[25]WANG Y, TONON F. Modeling Lac du Bonnet granite using a discrete element model[J]. International Journal of Rock Mechanics & Mining Sciences, 2009,46(7): 1124-1135.

PDF(2766 KB)

Accesses

Citation

Detail

段落导航
相关文章

/