为分析拱形-线形非线性磁力耦合压电俘能器振动特性,利用磁化电流法建立了磁力模型,实验测量并通过数据拟合方法获取了拱形-线形结构非线性恢复力模型,利用广义Hamilton变分原理建立系统的动力学方程。采用谐波平衡法对动力学方程进行了求解,揭示了不同激励条件、不同磁距对俘能器振动特性的影响关系并开展实验研究。结果表明:拱形-线形压电俘能器大幅响应带宽、响应幅值随激励强度的增大而增大;减小磁距会增加系统大幅响应带宽,但幅值有所降低。相对于直梁式结构俘能器,拱形-线形结构可以提高俘能器输出电压,提升俘能性能。研究为拱形-线形压电俘能器设计提供了理论指导,为改善俘能器性能提供了新的思路。
Abstract
In order to analyze vibration characteristics of an arc-thready nonlinear magnetic coupled piezoelectric energy harvester, the magnetic force model was established by using the magnetizing current method, the energy harvester’s nonlinear recovering force model was obtained using the test data fitting method, and the system’s dynamic equations were established using the generalized Hamilton variation principle.The harmonic balance method was used to solve the system’s dynamic equations, and reveal effects of excitation conditions and magnetic distance on the harvester’s vibration characteristics.The correctness of the theoretical analysis was verified with tests.The results showed that the large-amplitude response bandwidth and response amplitude of the energy harvester increase with increase in excitation intensity; decrease in magnetic distance can increase large-amplitude response bandwidth, and decrease response amplitude; compared with the energy harvester with a straight beam structure, the harvester with arch-thready structure can increase its output voltage and improve its energy-capturing performance; the study provides a theoretical guidance for designing arch-thready piezoelectric energy harvester, and a new idea for improving its performance.
关键词
拱形-线形梁 /
压电 /
非线性 /
建模 /
特性
{{custom_keyword}} /
Key words
arc-thready beam /
piezoelectric /
nonlinear /
modeling /
characteristic
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]ERTURK A, INMAN D.Piezolectric energy harvesting[M].New York, NY:John Wiley & Sons,2015.
[2]徐振龙, 单小彪, 谢涛.宽频压电振动俘能器的研究现状综述[J].振动与冲击,2018,37(8):190-199.
XU Zhenlong, SHAN Xiaobiao, XIE Tao.A review of broadband piezoelectric vibration energy harvester[J].Journal of Vibration and Shock, 2018, 37(8):190-199.
[3]ERTURK A, RENNO J M, INMAN D J.Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAV’s [in special issue on Energy Harvesting][J].Journal of Intelligent Material Systems & Structures, 2009, 20(5):529-544.
[4]YANG Z, WANG Y Q, ZUO L, et al.Introducing arc-shaped piezoelectric elements into energy harvesters[J].Energy Conversion and Management, 2017, 148:260-266.
[5] CAO D X, YAN H G, HU W.Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments[J].Acta Mechanica Sinica, 2019, 35(4):894-911.
[6]WANG B, LUO X, LIU Y, et al.Thickness-variable composite beams for vibration energy harvesting[J].Composite Structures, 2020,224:112232.
[7]ERTURK A, INMAN D.Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[J].Journal of Sound & Vibration, 2011, 330(10):2339-2353.
[8]ZHOU S, CAO J, ERTURK A, et al.Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J].Applied Physics Letters, 2013, 102(17):101301.
[9]张旭辉,赖正鹏,吴中华,等.新型双稳态压电振动俘能系统的理论建模与实验研究[J].振动工程学报,2019, 32(1):91
-100.
ZHANG Xuhui, LAI Zhengpeng, WU Zhonghua, et al.Theoretical modeling and experimental study of a new bistable piezoelectric vibration engergy harvesting system[J].Journal of Vibration Engineering, 2019, 32(1):91-100.
[10]ZHAO S, ERTURK A.On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system[J].Applied Physics Letters, 2013, 102:103902.
[11]FANG S, FU X, LIAO W H.Asymmetric plucking bistable energy harvester: modeling and experimental validation[J].Journal of Sound and Vibration, 2019, 459:114852.
[12]季文美,方同,陈松淇.机械振动[M].北京:科学出版社,1985.
[13]WANG G Q, LIAO W H, ZHAO Z X, et al.Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester[J].Nonlinear Dynamics, 2019,97(4):2371-2397.
[14]AGASHE J S, ARNOLD D P.A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions[J].Journal of Physics D: Applied Physics, 2008, 41(10): 105001.
[15]刘仲琳, 冷永刚, 刘进军,等.双稳悬臂梁电磁式振动能量采集研究[J].振动与冲击, 2019, 38(23):126-133.
LIU Zhonglin, LENG Yonggang, LIU Jinjun, et al.Electromagnetic type vibration energy harvester based on bi-stable cantilever beam[J].Journal of Vibration and Shock, 2019, 38(23):126-133.
[16]YANG Z, ZU J.Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting[J].Energy Conversion & Management, 2016, 122(8):321-329.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}