桥梁GNSS-RTK变形监测数据的CEEMDAN-WT联合降噪法

熊春宝,王猛,于丽娜

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 12-18.

PDF(1161 KB)
PDF(1161 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 12-18.
论文

桥梁GNSS-RTK变形监测数据的CEEMDAN-WT联合降噪法

  • 熊春宝,王猛,于丽娜
作者信息 +

CEEMDAN-WT joint denoising method for bridge GNSS-RTK deformation monitoring data

  • XIONG Chunbao, WANG Meng, YU Lina
Author information +
文章历史 +

摘要

在桥梁GNSS-RTK变形监测中,监测信号会被多路径噪声误差所影响。针对上述问题,提出了自适应经验模态分解(CEEMDAN)和小波变换(WT)相结合的方法对桥梁GNSS-RTK监测数据进行降噪处理。采用CEEMDAN对振动响应进行分解得到本征模态函数(IMFs),利用相关系数鉴别出有效的IMFs,同时利用WT中的不同小波基对其余噪声与信号共存的IMFs进行阈值降噪,最后对信号进行重组。通过对模拟试验和基于GNSS-RTK的海河斜拉桥实测数据进行处理,结果表明,CEEMDAN相比于EEMD能有效解决模态混叠问题,CEEMDAN与WT相结合的方法对桥梁监测数据具有良好的降噪效果,能成功提取到桥梁真实位移信息。

Abstract

In bridge GNSS-RTK deformation monitoring, monitoring signals can be affected by multi-path noise errors.Here, aiming at this problem, a method to combine adaptive EMD (CEEMDAN) and wavelet transform (WT) was proposed to denoise the bridge GNSS-RTK monitoring data.CEEMDAN was used to decompose the bridge’s vibration response, and obtain its intrinsic mode functions (IMFs).Effective IMFs were identified using correlation coefficient.Meanwhile, different wavelet bases in WT were used to perform threshold denoising for remaining IMFs with coexisting noise and signal.Finally, the signal was re-constructed.Through processing simulation test data and the actually measured data of Haihe River cable-stayed bridge based on GNSS-RTK, the results showed that compared with EEMD, CEEMDAN can effectively solve the problem of modal aliasing, the proposed CEEMDAN-WT method has a good noise reduction effect on bridge monitoring data, and can successfully extract bridge real displacement information.

关键词

全球导航卫星系统实时动态(GNSS-RTK) / 桥梁监测 / 基于自适应噪声的完全经验模态分解(CEEMDAN) / 小波变换(WT) / 数据降噪

Key words

global navigation satellite system-real time kinematic (GNSS-RTK) / bridge monitoring / complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) / wavelet transformation (WT) / data noise reduction

引用本文

导出引用
熊春宝,王猛,于丽娜. 桥梁GNSS-RTK变形监测数据的CEEMDAN-WT联合降噪法[J]. 振动与冲击, 2021, 40(9): 12-18
XIONG Chunbao, WANG Meng, YU Lina. CEEMDAN-WT joint denoising method for bridge GNSS-RTK deformation monitoring data[J]. Journal of Vibration and Shock, 2021, 40(9): 12-18

参考文献

[1]MIAO C Q, WANG M, TIAN H J, et al.Damage alarming of long-span suspension bridge based on GPS-RTK monitoring[J].Journal of Central South University, 2015, 22(7): 2800-2808.
[2]熊春宝, 陈雯, 翟京生, 等.GNSS RTK技术下海洋平台桩腿动态变形监测及数据处理[J].测绘通报, 2019(5): 102-105.
XIONG Chunbao, CHEN Wen, ZHAI Jingsheng, et al.Dynamic deformation monitoring and the data processing of offshore platform piles based on GNSS RTK technology [J].Bulletin of Surveying and Mapping, 2019 (5): 102-105.
[3]王海, 岳东杰.基于EMD的桥梁GPS动态监测数据处理[J].测绘工程, 2015, 24(11): 68-72.
WANG Hai, YUE Dongjie.Dynamic GPS monitoring data processing based on EMD [J].Engineering of Surveying and Mapping, 2015, 24 (11): 68-72.
[4]吴杰, 胡夏闽, 乔燕, 等.基于交叉证认的EMD小波滤波在大桥动态监测去噪中的应用[J].振动与冲击, 2017, 36(22): 212-217.
WU Jie, HU Xiamin, QIAO Yan, et al.EMD-wavelet filtering based on cross-validation and its application in bridge dynamic monitoring [J].Journal of Vibration and Shock, 2017, 36 (22): 212-217.
[5]KALOOP M R, KIM D.De-noising of GPS structural monitoring observation error using wavelet analysis[J].Geomatics Natural Hazards and Risk, 2016, 7(2): 804-825.
[6]SAYED M A, KALOOP M R, KIM E, et al.Assessment of acceleration responses of a railway bridge using wavelet analysis[J].KSCE Journal of Civil Engineering, 2017, 21(5): 1844-1853.
[7]叶飞, 吴加权, 张馨予, 等.基于谐波窗函数的桥梁振动信号分解与重构[J].振动与冲击, 2018, 37(16): 234-240.
YE Fei, WU Jiaquan, ZHANG Xinyu, et al.Decomposition and reconstruction of bridge vibration signals based on the harmonic window function [J].Journal of Vibration and Shock, 2018, 37 (16): 234-240.
[8]WANG J, LIU W Y, ZHANG S.An approach to eliminating end effects of EMD through mirror extension coupled with support vector machine method [J].Personal and Ubiquitous Computing, 2019, 23 (3/4): 443-452.
[9]潘庆, 姚正中.基于EEMD和ARMA算法的某大型斜拉桥的模态参数识别[J].交通科技, 2016(5): 6-9.
PAN Qing, YAO Zhengzhong.Modal parameter identification of a large cable-stayed bridge based on EEMD and ARMA algorithm [J].Transportation Science & Technology, 2016 (5): 6-9.
[10]周涛涛, 朱显明, 彭伟才, 等.基于CEEMD和排列熵的故障数据小波阈值降噪方法[J].振动与冲击, 2015, 34(23): 207-211.
ZHOU Taotao, ZHU Xianming, PENG Weicai, et al.A wavelet threshold denoising method for fault data based on
CEEMD and permutation entropy[J].Journal of Vibration and Shock, 2015, 34 (23): 207-211.
[11]颜潮勇.基于小波分析提取大跨径公路桥梁运营期GPS变形监测中的动态特性[J].甘肃科学学报, 2019, 31(3): 12-18.
YAN Chaoyong. Extraction of dynamic characteristics in GPS deformation monitoring of large-span highway bridge during operation period on the basis of wavelet analysis [J].Journal of Gansu Sciences, 2019, 31 (3): 12-18.
[12]赵宇翔.基于多种小波基的桥梁损伤信号分析方法研究[D].长春: 吉林建筑大学, 2017.
[13]严鹏.桥梁健康监测采样信号EMD小波相关降噪研究[J].噪声与振动控制, 2019, 39(3): 204-209.
YAN Peng. Study on EMD wavelet correlation de-noising of bridge health monitoring sampling signals [J].Noise and Vibration Control, 2019, 39 (3): 204-209.
[14]LEI Y G, LIU Z Y, OUAZRI J, et al.A fault diagnosis method of rolling element bearings based on CEEMDAN[J].Proceedings of the Institution of Mechanical Engineers, 2017, 231(10): 1804-1815.
[15]申博文, 王华庆, 唐刚, 等.基于MCKD与CEEMDAN的声信号故障特征提取方法[J].复旦学报(自然科学版), 2019, 58(3): 385-392.
SHEN Bowen, WANG Huaqing, TANG Gang, et al.Acoustic signal fault feature extraction method based on MCKD and CEEMDAN [J].Journal of Fudan University (Natural Science), 2019, 58 (3): 385-392.
[16]YE X W, XI P S, SU Y H.Analysis of non-stationary wind characteristics at an arch bridge using structural health monitoring data[J].Journal of Civil Structural Health Monitoring, 2017, 7(4): 573-587.
[17]ZHANG Y, LIAN J J, LIU F.An improved filtering method based on EEMD and wavelet-threshold for modal parameter identification of hydraulic structure[J].Mechanical Systems and Signal Processing, 2016, 68/69: 316-329.
[18]熊春宝, 路华丽, 朱劲松, 等.基于GPS-RTK和加速度计的桥梁动态变形监测试验[J].振动与冲击, 2019, 38(12): 69-73.
XIONG Chunbao, LU Huali, ZHU Jinsong, et al.Dynamic deformation monitoring of bridge structures based on GPS-RTK and accelerometers [J].Journal of Vibration and Shock, 2019, 38 (12): 69-73.
[19]杨琦, 陈智才.基于EMD和相关系数法的列车滚动轴承故障诊断方法研究[J].电力机车与城轨车辆, 2018, 41(3): 15-17.
YANG Qi, CHEN Zhicai.Fault diagnosis method for train rolling bearing based on EMD and CCM [J].Electric Locomotives & Mass Transit Vehicles, 2018, 41 (3): 15-17.

PDF(1161 KB)

Accesses

Citation

Detail

段落导航
相关文章

/