冰区海上单桩风机振动响应与控制

朱本瑞1,孙超2,黄焱1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 133-141.

PDF(2712 KB)
PDF(2712 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 133-141.
论文

冰区海上单桩风机振动响应与控制

  • 朱本瑞1,孙超2,黄焱1
作者信息 +

Vibration response and control of offshore monopile wind turbine in ice area

  • ZHU Benrui1, SUN Chao2, HUANG Yan1
Author information +
文章历史 +

摘要

针对冰区海域风机结构冰激锁频振动问题,深入开展其冰激振动响应分析,提出基于三维摆式阻尼器的冰区风机振动控制方法。基于Mttnen-Blenkarn自激振动理论,采用APDL开发冰区风机自激振动分析程序;基于叶素动量理论,考虑Prandtl叶尖损失修正和Grauert修正,利用MATLAB编程计算获得风机叶片空气动力载荷;针对NREL 5 MW海上单桩风机结构,考虑我国渤海海域一年一遇冰情,开展不同方向冰-风组合工况下的振动响应分析,给出风机结构发生锁频事件的冰速范围,并对有、无三维摆式阻尼器的风机塔筒响应进行对比分析,结果表明:单桩风机发生锁频事件对应的冰速范围为0.01~0.06 m/s,冰-风同向时,风机发生冰激锁频所对应的冰速范围最大,塔筒结构响应最大;三维摆式阻尼器能够显著抑制冰-风载荷联合作用下的塔筒面外和面内振动响应,从而大大提高其服役的安全性。该研究成果可为冰区服役风机结构的安全运行提供技术支持。

Abstract

Aiming at the problem of ice-induced frequency lock-in (FLI) vibration of offshore wind turbine (OWT) in ice area, the ice-induced vibration response analysis was performed, and the wind turbine vibration control method in ice area was proposed based on 3-D pendulum tuned mass damper (3D-PTMD).Based on the self-excited vibration theory of Mttnen-Blenkarn, ANSYS parametric design language (APDL) was used to develop the wind turbine self-excited vibration analysis program in ice area.Based on the blade element momentum theory, considering Prandtl blade-tip loss correction and Grauert correction, the aerodynamic load of wind turbine blade was calculated by using the program developed with MATLAB.The national renewable energy laboratory (NREL) 5 MW offshore monopile wind turbine was taken as an example.Considering the once-in-a-year ice situation in Bohai Sea of our country, the vibration response analyses of the wind turbine structure under different directions of ice-wind combination conditions were performed.The ice speed range for FLI event happening was deduced, and vibration responses of the wind turbine tower with and without 3D-PTMD were compared.The results showed that the ice speed corresponding to FLI happening of the monopile OWT is within the range of 0.01 m/s-0.06 m/s; when ice and wind acting on the turbine structure in the same direction, the ice speed range corresponding to FLI happening of the monopile OWT is the maximum and the vibration response of the tower structure is the maximum; 3D-PTMD can significantly suppress in-plane and out-plane vibration responses of the tower under combined action of ice-wind loads to greatly improve its service safety; the study results can provide a technical support for safe operation of OWTs serving in ice area.

关键词

海上单桩风机 / 海冰载荷 / 自激振动 / 动力响应 / 三维摆式阻尼器(3D-PTMD)

Key words

offshore monopile wind turbine / ice load / self-excited vibration / dynamic response / 3-D pendulum tuned mass damper (3D-PTMD)

引用本文

导出引用
朱本瑞1,孙超2,黄焱1. 冰区海上单桩风机振动响应与控制[J]. 振动与冲击, 2021, 40(9): 133-141
ZHU Benrui1, SUN Chao2, HUANG Yan1. Vibration response and control of offshore monopile wind turbine in ice area[J]. Journal of Vibration and Shock, 2021, 40(9): 133-141

参考文献

[1]Global Wind Energy Council.Global Wind Report 2018[R].2019.
[2]于南.海上风电热引发产业链“供小于求”担忧 风电龙头得利业绩全面提升[EB/OL].http://news.bjx.com.cn/html/20190823/1002147.shtml, 2019-08-23.
YU Nan.Offshore wind power boom triggers industry chain “Supply is less than demand” concerns wind power giant profits and performances improved comprehensively[EB/OL].http://news.bjx.com.cn/html/20190823/1002147.shtml, 2019-08-23.
[3]金风科技.重磅!金风科技:亚太地区最大叶轮直径海上风电机组满发运行[EB/OL].http://www.chinawindnews.com/10189.html, 2019-12-09.
Goldwind. Big news: goldwind technology: Asia Pacific region’s largest blade dimeter offshore wind turbine successfully runs[EB/OL].http://www.chinawindnews.com/10189.html, 2019-12-09.
[4]MTTNEN M.Ice induced frequency lock-in vibrations-converging towards consensus[C]//Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions.Trondheim, Norway, 2015.
[5]HOU J, SHAO W.Structural design for the ice-resistant platform[C]//The 24th International Ocean and Polar Engineering Conference.International Society of Offshore and Polar Engineers.Busan, Korea, 2014.
[6]YUE Q, BI X.Ice-induced jacket structure vibrations in Bohai Sea[J].Journal of Cold Regions Engineering, 2000, 14(2): 81-92.
[7]YUE Q, GUO F, KRN T.Dynamic ice forces of slender vertical structures due to ice crushing[J].Cold Regions Science and Technology, 2009, 56(2/3): 77-83.
[8]JEFFRIES M G, WRIGHT W H.Dynamic response of “Molikpaq” to ice-structure interaction[C]//Proceedings of the 7th Offshore Mechanics and Arctic Engineering Conference.Houston, TX, 1988.
[9]BLENKARN K A.Measurement and analysis of ice forces on cook inlet structures[C]//Offshore Technology Conference.Houston, TX, 1970.
[10]HUANG Y, SHI Q, SONG A.Model test study of the interaction between ice and a compliant vertical narrow structure[J].Cold Regions Science and Technology, 2007, 49(2): 151-160.
[11]POPKO W, GEORGIADOU S.Validation of Mttnen-Blenkarn ice model for ice-structure interaction against ice tank tests[C]//The 25th International Ocean and Polar Engineering Conference.International Society of Offshore and Polar Engineers.Kona, Hawaii, 2015.
[12]HEINONEN J, HETMANCZYK S, STROBEL M.Introduction of ice loads in overall simulation of offshore wind turbines[C]//Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions.Montreal: POAC11-024, 2011.
[13]黄焱, 马玉贤, 罗金平, 等.渤海海域单柱三桩式海上风电结构冰激振动分析[J].海洋工程, 2016, 34(5): 1-10.
HUANG Yan, MA Yuxian, LUO Jinping, et al.Analyses on ice induced vibrations of a tripod piled offshore wind turbine structure in Bohai Sea[J].The Ocean Engineering, 2016, 34(5): 1-10.
[14]叶柯华, 李春, 王渊博, 等.湍流风与浮冰联合作用下近海风力机动力学响应[J].热能动力工程, 2019, 34(9): 123.
YE Kehua, LI Chun, WANG Yuanbo, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J].Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 123.
[15]SPENCER B F, Jr, NAGARAJAIAH S.State of the art of structural control[J].Journal of Structural Engineering, 2003, 129(7): 845-856.
[16]YUE Q, ZHANG L, ZHANG W, et al.Mitigating ice-induced jacket platform vibrations utilizing a TMD system[J].Cold Regions Science and Technology, 2009, 56(2/3): 84-89.
[17]MRZ A, HOLNICKI-SZULC J, KRN T.Mitigation of ice loading on off-shore wind turbines: Feasibility study of a semi-active solution[J].Computers & structures, 2008, 86(3/4/5): 217-226.
[18]ZHANG Z L, CHEN J B, LI J.Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber[J].Structure and Infrastructure Engineering, 2014, 10(8): 1087-1100.
[19]BUCKLEY T, WATSON P, CAHILL P, et al.Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction[J].Renewable Energy, 2018, 120: 322-341.
[20]SUN C.Semi-active control of monopile offshore wind turbines under multi-hazards[J].Mechanical Systems and Signal Processing, 2018, 99: 285-305.
[21]SUN C.Mitigation of offshore wind turbine responses under wind and wave loading: considering soil effects and damage[J].Structural Control and Health Monitoring, 2018, 25(3): e2117.
[22]GHASSEMPOUR M, FAILLA G, ARENA F.Vibration mitigation in offshore wind turbines via tuned mass damper[J].Engineering Structures, 2019, 183: 610-636.
[23]SUN C, JAHANGIRI V.Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper[J].Mechanical Systems and Signal Processing, 2018, 105: 338-360.
[24]YE K, LI C, YANG Y, et al.Research on influence of ice-induced vibration on offshore wind turbines[J].Journal of Renewable and Sustainable Energy, 2019, 11(3): 033301.
[25]MTTNEN M.Numerical model for ice-induced vibration load lock-in and synchronization[C]//Proceedings of the 14th International Symposium on Ice, Potsdam.New York, 1998.
[26]IEC. Wind turbines.Part 3: design requirements for offshore wind turbines[C]//International Electrotechnical Commission.Geneva, Switzerland: IEC 61400-3, 2009.
[27]JONKMAN B, KILCHER L.TurbSim user’s guide: version 1.06.00[R].National Renewable Energy Laboratory, Technical Report, 2012.
[28]HANSEN M O L.Aerodynamics of wind turbines[M].London: Routledge, 2015.
[29]CARSWELL W, JOHANSSON J, LOVHOLT F, et al.Foundation damping and the dynamics of offshore wind turbine monopiles[J].Renewable Energy, 2015, 80: 724-736.
[30]TIMCO G W, IRANI M B, TSENG J, et al.Model tests of dynamic ice loading on the Chinese JZ-20-2 jacket platform[J].Canadian Journal of Civil Engineering, 1992, 19(5): 819-832.

PDF(2712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/