研究了三种地形因素(山脉长度、山脉坡度、山脉间距)对峡谷和垭口中输电线路风速及风偏响应特性的影响。采用CFD数值模拟得到峡谷和垭口中输电线路沿线各点横向和竖向平均风速,分析了山脉长度、山脉坡度、山脉间距对输电线路各点平均风速的影响。建立了跨越峡谷和垭口的三跨输电线路有限元模型,分别利用数值模拟风速和平地风速计算了线路各点位移,得到风偏角增大百分比。利用响应面方法建立了三种地形因素和风偏角增大百分比的二次回归方程,分析了地形因素对风偏角的影响规律。研究表明:峡谷和垭口对横向风的加速效果明显,山脉入口处风速最大,对竖向风速加速效应不显著。山脉越长且山脉间距越大,风偏角增大百分比越小,随着山脉坡度的减小呈先增大后减小趋势。三种地形因素对风偏角增大百分比影响的灵敏度从大到小依次为山脉长度、间距和坡度。该研究结果可为峡谷和垭口地形条件下的输电线路抗风偏设计提供有价值的参考。
Abstract
Effects of 3 terrain factors (mountain length, mountain slope and mountain spacing) on wind speed and wind deflection response characteristics of transmission lines in canyon and mountain pass were studied.Horizontal and vertical average wind speeds at each point of transmission lines in canyon and mountain pass were obtained using CFD numerical simulation, and effects of mountain length, mountain slope and mountain spacing on the average wind speed at each point of transmission lines were analyzed.The finite element model of 3-span transmission line across canyon and mountain pass was established.Displacements of each point of the line were calculated by using numerical simulation wind speed and ground wind speed, respectively to obtain the percentage of wind deflection angle increasing.Quadratic regression equations of 3 terrain factors and the percentage of wind deflection angle increasing were established by using the response surface method to analyze effects of terrain factors on wind deflection angle.The results showed that the acceleration effect of canyon and mountain pass on transverse wind is obvious, the wind speed at entrance of mountain is the largest, and the acceleration effect on vertical wind speed is not significant; the longer the mountain and the larger the spacing between mountains, the smaller the percentage of wind deflection angle increasing; with decrease in mountain slope, the percentage firstly increases and then decreases; the sensitivities of 3 terrain factors on the percentage of wind deflection angle increasing, from large to small, are mountain length, spacing and slope; the study results can provide a valuable reference for the anti-wind deflection design of transmission lines under terrain conditions of canyon and mountain pass.
关键词
山地风场 /
输电线路 /
风偏响应 /
加速效应 /
上升气流 /
响应面
{{custom_keyword}} /
Key words
mountain wind filed /
transmission line /
wind deflection response /
acceleration effect /
updraft /
response surface
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]庞加斌, 沿海和山区强风特性的观测分析与风洞模拟研究[D].上海:同济大学,2006.
[2]110 kV~750 kV架空输电线路设计规范:GB 50545—2010[S].北京:中国计划出版社,2010.
[3]付学文,王培军,魏智娟.500 kV线路风偏事故分析及防止对策[J].华北电力技术,2011(4):5-8.
FU Xuewen,WANG Peijun,WEI Zhijuan.Research on 500 kV transmission lines windage yaw accident and prevention countermeasures[J].North China Electric Power,2011(4):5-8.
[4]楼文娟,杨悦,卢明,等.连续多跨输电线路动态风偏特征及计算模型[J].电力建设,2015,36(2):1-8.
LOU Wenjuan,YANG Yue,LU Ming,et al.Conductor swinging dynamic characteristic and calculation model of continuous multi-span transmission line[J].Electric Power Construction,2015,36(2):1-8.
[5]TSUJIMOTO K,YOSHIOKA O,OKUMURA T,et al.Investigation of conductor swinging by wind and its application for design of compact transmission line [J].IEEE Power & Energy Magazine, 1982,101(11):4361-4369.
[6]刘小会,严波,林雪松,等.500 kV超高压输电线路风偏数值模拟研究[J].工程力学,2009,26(1):244-249.
LIU Xiaohui,YAN Bo,LIN Xuesong,et al.Numerical simulation of windage yaw of 500 kV UHV transmission line[J].Engineering Mechanics,2009,26(1):244-249.
[7]杨悦.脉动风载下的输电线路风偏计算研究[D].杭州:浙江大学,2015.
[8]张禹芳.我国500 kV输电线路风偏闪络分析[J].电网技术,2005(7):65-67.
ZHANG Yufang.Analysis on flashover between tower and conducting wires in domestic 500 kV transmission lines caused by windage yaw[J].Power System Technology,2005(7):65-67.
[9]BULLARD J E, WIUUS U F S, NASH D J. Experimental study of wind directional variability in the vicinity of a model valley[J].Geomorphology, 2000, 35:127-143.
[10]BOWEN A J, LINDLEY D.A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes[J].Boundary-Layer Meteorology,1977, 12(3): 259-271.
[11]LUBITZ W D, WHITE B R.Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills[J].Journal of Wind Engineering and Industrial Aerodynamics,2006,95(8):639-661.
[12]NEFF D E, MERONEY R N.Wind-tunnel modeling of hill and vegetation influence on wind power availability[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74/75/76:335-343.
[13]孙毅,李正良,黄汉杰,等.山地风场平均及脉动风速特性试验研究[J].空气动力学学报,2011,29(5):593-599.
SUN Yi,LI Zhengliang,HUANG Hanjie,et al.Experimental study on the average and fluctuating wind speed characteristics of mountain wind field[J].Acta Aerodynamica Sinica,2011,29(5):593-599.
[14]李正良,魏奇科,孙毅.复杂山地风场幅值特性试验研究[J].工程力学,2012,29(3):184-191.
LI Zhengliang,WEI Qike,SUN Yi.Experimental research on amplitude characteristics of complex hilly terrain wind field[J].Engineering Mechanics,2012,29(3):184-191.
[15]李天昊.输电导线气动力特性及风偏计算研究[D].杭州:浙江大学,2016.
[16]刘萌萌.山地风场下输电线路风致响应研究[D].杭州:浙江大学,2017.
[17]李正昊.山脉地形下的平均风场特性研究[D].杭州:浙江大学,2016.
[18]楼文娟,吴登国,刘萌萌,等.山地风场特性及其对输电线路风偏响应的影响[J].土木工程学报,2018,51(10):46-55.
LOU Wenjuan,WU Dengguo,LIU Mengmeng,et al.Properties of mountainous terrain wind field and their influence on wind-induced swing of transmission lines[J].China Civil Engineering Journal,2018,51(10):46-55.
[19]楼文娟,刘萌萌,李正昊,等.峡谷地形平均风速特性与加速效应[J].湖南大学学报(自然科学版),2016,43(7):8-15.
LOU Wenjuan, LIU Mengmeng, LI Zhenghao, et al. Research on mean wind speed characteristics and speed-up effect in canyon terrain[J].Journal of Hunan University(Natural Sciences),2016,43(7):8-15.
[20]赵永锋,康顺,梁思超.复杂地形风场CFD模拟计算域的讨论[J].太阳能学报,2015,36(2):355-361.
ZHAO Yongfeng, KANG Shun, LIANG Sichao.Discussion on computational domain of CFD simulation of wind field in complex terrain[J].Acta Energies Solaris Sinica,2015,36(2):355-361.
[21]RICHARDS P J, YOUNIS B A.Comments on ‘Prediction of wind-generated pressure distribution around buildings’ by Mathews E H[J].Journal of Wind Engineering and Industrial Aerodynamics,1990, 34(1): 107-110.
[22]建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版,2012.
[23]Architectural Institute of Japan.AIJ recommendations for loads on buildings [S].Tokyo: Architectural Institute of Japan, 2004.
[24]LUO Ling,ZHOU Binxing,GUO Wei,et al.Research on the extraction technology of Pu-erh tea polysaccharide by response surface analysis[J].Agricultural Science & Technology,2013,14(3):494-497.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}