部分埋置核心钢管组合桥墩抗震性能试验研究

李文武1,邱文亮2,田甜1,张哲2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 19-29.

PDF(2500 KB)
PDF(2500 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 19-29.
论文

部分埋置核心钢管组合桥墩抗震性能试验研究

  • 李文武1,邱文亮2,田甜1,张哲2
作者信息 +

Experimental study on seismic behavior of bridge columns with a partially-embedded core steel tube inside

  • LI Wenwu1, QIU Wenliang2, TIAN Tian1, ZHANG Zhe2
Author information +
文章历史 +

摘要

为研究墩身内部分埋置核心钢管组合桥墩的抗震性能,考虑核心钢管埋置长度、规格以及轴压比和配箍率4个参数,设计了8个剪跨比λ=3.0的圆形截面桥墩试件进行拟静力试验。通过试验揭示此类桥墩的破坏机理,并分析各参数变化对墩身水平承载力、变形能力和强度衰减的影响规律。结果表明:受钢管埋置长度和规格大小的影响,部分埋置核心钢管组合桥墩呈现出墩身中部剪切、墩身中部弯曲和墩底区域弯曲破坏三种失效模式;随钢管埋置长度的增加,墩身的水平承载力逐渐提高,但变形能力则先增后减;增大配箍率或降低轴压比可改善此类桥墩的变形能力并提高其强度衰减的稳定性。最后,在分析此类桥墩受力特性的基础上,通过构造等效剪跨比的表达式,给出了其水平承载力的实用计算方法。

Abstract

In order to investigate the seismic behavior of bridge columns reinforced by a partially-embedded core steel tube(BCRPCT), eight circular column specimens with an aspect ratio of 3.0 were designed and tested under cyclic loading conditions.The test variables were core steel tube embedment length and specification, axial load ratio and stirrup ratio.Based on the test observations, the failure mechanism of BCRPCT is revealed.Besides, the effects of the test variables on the lateral load capacity, deformability and strength attenuation of BCRPCT are also evaluated.Test results demonstrate that affected by the core steel tube embedment length or specification, BCRPCT showed three different failure pattrens, namely shear failure or flexural failure at the column mid-height and flexural failure at the column base.With the increase of core steel tube embedment length, the lateral load capacity of BCRPCT was progressively enhanced; however, the deformability exhibited a tend of first increase and then decrease.It is also found that the deformability and the stability of strength attenuation can be improved by increasing the stirrup ratio or decreasing the axial load ratio.At last, on the basis of analysis of the mechanical properties, the practical method for lateral load capacity predition of BCRPCT is suggested through construct the intermediate variable of equivalent aspect ratio.

关键词

钢-混凝土组合桥墩 / 抗震性能 / 拟静力试验 / 滞回曲线 / 水平承载力

Key words

steel-concrete composite bridge column / seismic behavior / pseudo-static test / hysteretic curves / lateral load capacity

引用本文

导出引用
李文武1,邱文亮2,田甜1,张哲2. 部分埋置核心钢管组合桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(9): 19-29
LI Wenwu1, QIU Wenliang2, TIAN Tian1, ZHANG Zhe2. Experimental study on seismic behavior of bridge columns with a partially-embedded core steel tube inside[J]. Journal of Vibration and Shock, 2021, 40(9): 19-29

参考文献

[1]范立础.桥梁抗震[M].上海: 同济大学出版社, 1997.
[2]YAO T H, CHUNG C F.Seismic effect on highway bridges in Chi Chi Earthquake[J].Journal of Performance of Constructed Facilities, 2004, 18(1), 869-879.
[3]刘健新, 赵国辉.5.12汶川地震典型桥梁震害分析[J].建筑科学与工程学报, 2009, 26(2): 92-97.
LIU Jianxin, ZHAO Guohui.Typical bridge damage analysis in “5.12” Wenchuan earthquake[J].Journal of Architecture and Civil Engineering, 2009, 26(2): 92-97.
[4]QIU W L, JIANG M, PAN S S, et al.Seismic responses of composite bridge piers with CFT columns embedded inside[J].Steel and Composite Structures, 2013, 15(3): 343-355.
[5]QIU W L, KAO C S, KOU C H, et al.Experimental study of seismic performances of RC bridge columns with CFST column embedded inside[J].Journal of Marine Science and Technology, 2015, 23(2): 212-219.
[6]TIAN T, QIU W L, ZHANG Z.Behaviour of steel tube reinforced-concrete short bridge columns under cyclic loading[J].Magazine of Concrete Research, 2018, 70(22): 1157-1174.
[7]邱文亮, 胡哈斯, 田甜, 等.影响钢管混凝土组合桥墩抗震性能的结构参数[J].浙江大学学报(工学版), 2019, 53(5): 889-898.
QIU Wenliang, HU Hasi, TIAN Tian, et al.Structural parameters affecting seismic behavior of concrete filled steel tube composite piers[J].Journal of Zhejiang University(Engineering Science), 2019, 53(5): 889-898.
[8]邱文亮, 田甜, 张哲.反复荷载作用下钢管混凝土组合桥墩抗震性能试验研究[J].振动与冲击, 2019, 38(17): 156-164.
QIU Wenliang, TIAN Tian, ZHANG Zhe.Experimental study on the seismic behavior of steel tube reinforced concrete bridge columns under cyclic loading[J].Journal of Vibration and Shock, 2019, 38(17): 156-164.
[9]SAIIDI M S, TAZARV M.Low-damage precast columns for accelerated bridge construction in high seismic zones[J].Journal of Bridge Engineering, 2016, 21(3): 04015056.
[10]伍凯, 薛建阳, 赵鸿铁.SRC-RC竖向混合结构转换柱承载力与延性分析[J].四川大学学报(工程科学版), 2012, 44(3): 63-70.
WU Kai, XUE Jianyang, ZHAO Hongtie.Analysis on bearing capacity and ductility performance of transfer columns in SRC-RC hybrid structures[J].Journal of Sichuan University(Engineering Science Edition), 2012, 44(3): 63-70.
[11]伍凯, 薛建阳, 赵鸿铁.SRC-RC转换柱中钢与混凝土的共同工作[J].华南理工大学学报(自然科学版), 2015, 43(7): 75-83.
WU Kai, XUE Jianyang, ZHAO Hongtie.Cooperation of shape steel and concrete in SRC-RC transfer column [J].Journal of South University of Technology(Natural Science Edition), 2015, 43(7): 75-83.
[12]贾金青, 马英超, 封硕.高轴压比作用下型钢超高强混凝土框架抗震试验研究[J].湖南大学学报(自然科学版), 2016, 43(9): 1-9.
JIA Jinqing, MA Yingchao, FENG Shuo.Study of seismic performance of steel ultra high strength concrete frames under the effect of high axial compression ratio[J].Journal of Hunan University(Natural Sciences), 2016, 43(9): 1-9.
[13]PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J].Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3): 155-166.
[14]伍凯, 薛建阳, 赵鸿铁.SRC-RC竖向混合结构转换柱破坏机理与抗剪承载力计算[J].工程力学, 2011, 28(10): 133-138.
WU Kai, XUE Jianyang, ZHAO Hongtie.Failure mechanism and shear capacity calculation of transfer column in SRC-RC hybrid structure[J].Engineering Mechanics, 2011, 28(10): 133-138.
[15]钢管混凝土叠合柱结构技术规程:CECS 188—2005 [S].北京:中国计划出版社, 2005.
[16]混凝土结构设计规范:GB 50010—2010[S].北京: 中国建筑工业出版社, 2010.

PDF(2500 KB)

337

Accesses

0

Citation

Detail

段落导航
相关文章

/