基于遗传算法的分支管路系统动力学优化设计

曹银行1,柳贡民1,张龙2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 221-227.

PDF(1210 KB)
PDF(1210 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 221-227.
论文

基于遗传算法的分支管路系统动力学优化设计

  • 曹银行1,柳贡民1,张龙2
作者信息 +

Dynamic optimization design of branch pipeline system based on genetic algorithm

  • CAO Yinhang1, LIU Gongmin1, ZHANG Long2
Author information +
文章历史 +

摘要

首先给出了传递矩阵法计算管路动力学问题的一般步骤和任意管路分支元件吸收传递矩阵法点传递矩阵的建立过程,实现了分支管路系统动力学问题的求解并通过与实验结果的对比证明其正确性;之后基于选定的分支管路设计基础模型,利用均匀设计原则选取计算样本并应用传递矩阵法对样本模型进行计算,最后利用二阶多项式响应面函数逼近回归模型并应用遗传算法寻优,对分支管路进行优化设计,通过吸收传递矩阵法、均匀设计原则和数学建模优化的方法,更好地节省计算成本和资源,对分支管路设计过程有一定的指导意义。

Abstract

Here, the general procedure of the transfer matrix method for pipeline dynamic calculation and the establishment process of the point transfer matrix for the absorption transfer matrix method of arbitrary pipeline branch element were derived firstly, solving dynamic problems of branched pipeline systems was realized, and their correctness was verified by comparing the theoretical calculation results with test ones.Then, based on the selected basic model of branched pipeline design, the uniform design principle was used to select calculation samples, and the transfer matrix method was used to do the sample model calculation.Finally, the second-order polynomial response surface function was used to approximate a regression model, and the genetic algorithm was used to optimize the branched pipeline design.It was shown that adopting the transfer matrix method, the uniform design principle and the mathematical modeling optimization method, calculation cost and resources can be better saved; the study results have a certain guiding significance for branched pipeline design process.

关键词

分支管路系统 / 吸收传递矩阵法 / 遗传算法 / 动力学设计

Key words

branched pipeline system / absorption transfer matrix method / genetic algorithm / dynamic design

引用本文

导出引用
曹银行1,柳贡民1,张龙2. 基于遗传算法的分支管路系统动力学优化设计[J]. 振动与冲击, 2021, 40(9): 221-227
CAO Yinhang1, LIU Gongmin1, ZHANG Long2. Dynamic optimization design of branch pipeline system based on genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(9): 221-227

参考文献

[1]JANKAUSKAS K, FARID S S.Multi-objective biopharma capacity planning under uncertainty using a flexible genetic algorithm approach[J].Computers and Chemical Engineering, 2019(128):35-52.
[2]MALAKOTI-MOGHADAM  M, ASKARZADEH  A, RASHIDINEJAD  M.Transmission and generation expansion planning of energy hub by an improved genetic algorithm[J].Energy Sources Part A: Recovery, Utilization and Environmental Effects, 2019,41(24):3112-3126.
[3]SON  S R,   JEONG  Y N, LEE B K.An optimal driving support strategy(ODSS) for autonomous vehicles based on an genetic algorithm[J].KSII Transactions on Internet and Information Systems, 2019, 13(12):5842-5861.
[4]董宗然.船舶管路自动布置方法及应用研究[D].大连:大连理工大学,2017.
[5]BHOSALE K C, PAWAR P J.Material flow optimisation of production planning and scheduling problem in flexible manufacturing system by real coded genetic algorithm (RCGA)[J].Flexible Services and Manufacturing Journal, 2019, 31(2):381-423.
[6]杜立群,颜云辉,王德俊.智能结构振动主动控制中驱动器的最优配置[J].东北大学学报,1999(2):84-87.
DU Liqun, YAN Yunhui, WANG Dejun.Optimal configuration of actuators in active vibration control of intelligent structures[J].Journal of Northeast University, 1999(2): 84-87.
[7]张宏伟,徐世杰,黄文虎.一种混合遗传算法在压电智能结构振动控制全局优化设计中的应用[J].振动与冲击,1999,18(4):8-13.
ZHANG Hongwei, XU Shijie, HUANG Wenhu.Application of a hybrid genetic algorithm in the global optimization design of vibration control of piezoelectric intelligent structures[J].Journal of Vibration and Shock, 1999,18(4): 8-13.
[8]倪振华.振动力学[M].西安:西安交通大学出版社,1989.
[9]柳贡民,陈浩,李帅军,等.求解任意分支结构动力学问题的传递矩阵方法[J].船舶力学,2013(17):411-417.
LIU Gongmin, CHEN Hao, LI Shuaijun, et al.Tranfer matrix method for solving dynamics problems of structures wth arbitrary branches[J].Journal of Ship Mechanics, 2013(17):411-417.
[10]ADAMKOWSKI A, HENCLIK S, LEWANDOWSKI M.Experimental and numerical results of the influence of dynamic poisson effect on transient pipe flow parameters[J].Conference Series: Earth and Environmental Science, 2010(12): 12-41.
[11]TIJSSELING A S, VARDY A E, FAN D.Fluid-structure interaction and cavitation in a single-elbow pipe system[J].J Fluid Struct, 1996, 10(4): 395-420.
[12]CHEN C C.Noise and vibration in complex hydraulic tubing systems[M]//Continuum Mechanics: Progress in Fundamentals and Engineering Applications.Intechopen, 2012.
[13]李艳华.考虑流固耦合的管路系统振动噪声及特性研究[D].哈尔滨:哈尔滨工程大学,2011.
[14]罗文.输流管路流固耦合计算研究[D].哈尔滨:哈尔滨工程大学,2017.
[15]TIJSSELING A S, LAVOOIJ C  S W.Water hammer with fluid-structure interaction[J].Appl Sci Res, 1990, 47(3): 273-
285.
[16]LAVOOIJ C S  W, TIJSSELING A  S.Fluid-structure interaction in liquid-filled piping systems[J].J Fluid Struct, 1991, 5(5): 573-595.
[17]GALE J, TISELJ I.Eight equation model for arbitrary shaped pipe conveying fluid[C]//Proceedings of the International Conference Nuclear Energy for New Europe.Slovenia, 2006.
[18]LIN T  C, MORGAN G W.Wave propagation through fluid contained in a cylindrical, elastic shell[J].The Journal of the Acoustical Society of America, 1956, 28(6): 1165-1176.
[19]WIGGERT D  C, HATFIELD F J, STUCKENBRUCK S.Analysis of liquid and structural transients in piping by the method of characteristics[J].Journal of Fluids Engineering, 1987(109): 161-165.
[20]LIU G, LI S, LI Y, et al.Vibration analysis of pipelines with arbitrary branches by absorbing transfer matrix method[J].Journal of Sound and Vibration, 2013, 332(24): 6519-6536.
[21]王元,文兰,陈木法.数学大辞典[M].北京:科学出版社,2010.
[22]陈浩.蒸汽管路系统结构振动研究[D].哈尔滨:哈尔滨工程大学,2011.

PDF(1210 KB)

Accesses

Citation

Detail

段落导航
相关文章

/