随着电子设备高集成、高密度的发展,芯片内部键合丝的间距越来越小,处于严酷振动环境中的键合丝可能会发生交叉、碰触短路等可靠性问题。针对实际工程中的某芯片键合丝碰触短路问题,采用理论分析获得键合丝的固有频率。通过建立有限元法模型,研究了随机振动中键合丝变形引起的碰触问题,获得键合丝碰触的加速度功率谱密度阀值。最后采用高速摄像技术进行试验验证,结果表明所采用的理论和数值分析方法能够准确获得键合丝的碰撞接触阀值,为键合丝在振动环境中应用提供可靠性判据。
Abstract
With the development of high integration and high density of electronic equipment, the spacing of bonding wires inside chips becomes smaller and smaller.In harsh vibration environment, bonding wires may have cross, touch short circuit and other reliability problems.Here, aiming at the short circuit problem of a certain chip bonding wire in practical engineering, the natural frequency of the chip’s bonding wire was obtained with theoretical analysis.Establishing the finite element model was used to study the contact problem caused by bonding wire deformation in random vibration, and the threshold value of the power spectral density of bonding wire contact acceleration was obtained.Finally, the high-speed camera technique was used to do test verification.The results showed that the theoretical and numerical analysis method can accurately obtain the impact contact threshold of bonding wire to provide a reliability criterion for application of bonding wires in vibration environment.
关键词
键合丝 /
碰触 /
随机振动 /
功率谱密度 /
有限元法
{{custom_keyword}} /
Key words
bonding wire /
contact /
random vibration /
power spectral density /
finite element method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]KUNG H K, HSIUNG J C, LEE J N. Empirical equation of wire sag model for semiconductor packaging with numerical and experimental verification[J].IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2013,3(1): 157-167.
[2]CHE F X, WAI L C, CHAI T C.Failure mode and mechanism analysis for Cu wire bond on Cu/Low-k chip by wire pull test and finite-element analysis[J].IEEE Transactions on Device and Materials Reliability, 2018,18(2):1.
[3]PEDERSEN K B, NIELSEN D A, CZEMY B, et al. Wire bond degradation under thermo-and pure mechanical loading[J].Microelectronics Reliability,2017,76/77:373-377.
[4]HARMAN G G.Wire bonding in microelectronics[M].3rd ed.New York: McGraw-Hill Companies, 2010.
[5]MAZLOUM-NEJADARI A, KHATIBI G, CZEMY B, et al.Reliabily of Cu wire bonds in microelectronic packages[J].Microelectronics Reliability,2017,74:147-154.
[6]KUNG H K, SUN Y, LEE J N, et al.A method to determine the sweep resistance of wire bonds for microelectronic packaging[J].Microelectron Engineering, 2008, 85(9):1902-1909.
[7]KUNG H K.Evaluation of sweep resistance of Q auto-loop and square-loop bonds for semiconductor packaging technology[J].Microelectron Reliability, 2007, 47(7): 1103-1112.
[8]MANOHARAN S, PATEL C, HUNTER S, et al.Mechanism of wire bond shear testing[J].Microelectronics Reliability,
2018, 88/89/90: 738-744.
[9]赵爽,赵子华,雷鸣,等.微米尺度铜键合丝疲劳性能研究[J].机械工程学报,2016,52(18):70-76.
ZHAO Shuang, ZHAO Zihua, LEI Ming, et al.Research on fatigue performance of copper bonded wires at micron scale[J]. Journal of Mechanical Engineering, 2016, 52(18): 70-76.
[10]KUNG H K, HUANG B W.High-temperature wire sweep characteristics of semiconductor package for variable loop-height wirebonding technology[J].Microelectron Engineering, 2006,83(2):197-205.
[11]STEINBERG D.Vibration analysis for eletronic equipment[M].Hoboken, NJ: John Wiley & Song,Inc,2000.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}