格栅夹层板材料由于其拥有耐冲击性能良好、比强度大和比刚度高等优点,已在实际工程中得到了广泛的应用。虽然格栅夹层板结构在高频段具有优良的隔声性能,但在中低频段受质量定律的限制,使得其隔声性能并不理想。声子晶体作为一种周期性的结构,因其特殊的带隙特性,使特定频率的弹性波无法在结构中传播,因而具有优良的抑制噪声传播的性能;将声子晶体结构与夹层板结构相结合,设计了一种在设定频率范围具有优良隔声性能的声子晶体夹层板结构。通过数值仿真和结构模型的试验,验证了该设计的声子晶体夹层板结构具有优良的隔声性能。Sound insulation performance of phononic crystal sandwich plate structure
Abstract
Because of its good impact resistance, large specific strength and high specific stiffness, grid sandwich panel is widely used in practical engineering.Although the grid sandwich panel structure has excellent sound insulation performance in high frequency band, its sound insulation performance is not ideal in medium and low frequency bands due to the limitation of the mass law.As a kind of periodic structure, phononic crystal has excellent noise suppression performance because of its special band gap characteristics to make elastic wave with specific frequency unable to propagate in a structure.Here, phononic crystal structure was combined with sandwich plate structure to design a kind of phononic crystal sandwich plate structure with excellent sound insulation performance in setting frequency range.Numerical simulation and structural model tests were performed to do verification.It was shown that the designed phononic crystal sandwich plate structure has excellent sound insulation performance.
关键词
声子晶体 /
夹层板 /
隔声特性 /
带隙特性
{{custom_keyword}} /
Key words
phononic crystal /
sandwich plate /
sound insulation characteristics /
band gap characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]刘建良, 梅志远, 唐宇航, 等.几种典型复合材料板振动特性综合对比分析及设计规律研究[J].振动与冲击,2019, 38(15):65-72.
LIU Jianliang, MEI Zhiyuan, TANG Yuhang, et al.Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law[J].Journal of Vibration and Shock, 2019, 38(15): 65-72.
[2]温熙森, 温激鸿, 郁殿龙, 等.声子晶体[M].北京: 国防工业出版社, 2009.
[3]SIGALAS M M, ECONOMOU E N.Elastic and acoustic wave band structure[J].Journal of Sound and Vibration, 1992, 158(2):377-382.
[4]KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al.Acoustic band structure of period elastic composites[J].Physical Review Letters,1993,71(13):2022-2025.
[5]MESEGUER F, SANCHEZ-PEREZ J V, RUBIO C, et al.Sound attenuation by a two dimensional array of cylinders[J].The Journal of the Acoustical Society of America, 1998, 104(3):5325-5328.
[6]HO M K, CHENG C K, YANG Z, et al.Broadband locally resonant sonic shields[J].Applied Physics Letters, 2003, 83(26): 5566-5568.
[7]XIAO Y, WEN J H, WEN X S.Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators[J].Journal of Sound and Vibration, 2012, 331(25): 5408-5423.
[8]ZHANG Y G, WEN J H, ZHAO H G, et al.Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells[J].Journal of Applied Physics, 2013, 114(6):063515.
[9]何晓栋, 肖勇, 温激鸿.晶格常数对声学超材料板隔声特性的影响研究[J].噪声与振动控制,2018,38(增刊1):51-55.
HE Xiaodong, XIAO Yong, WEN Jihong.Influence of lattice constant on sound insulation properties of acoustic metamaterial plates[J].Noise and Vibration Control, 2018,38(Sup1): 51-55.
[10]中国科学院北京力学研究所固体力学研究室板壳组.夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977.
[11]张若军,肖勇,温激鸿,等.四边固支局域共振型板的低频隔声特性研究[J].振动工程学报, 2016,29(5):905-912.
ZHANG Ruojun, XIAO Yong, WEN Jihong, et al.Analysis of sound transmission through clamped locally resonant plate in low frequency
[J].Journal of Vibration Engineering, 2016, 29(5):905-912.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}