变阶次分数阶梯度下降法的研究

李佳维1, 2,申永军1, 2,杨绍普1, 2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 43-47.

PDF(677 KB)
PDF(677 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 43-47.
论文

变阶次分数阶梯度下降法的研究

  • 李佳维1, 2,申永军1, 2,杨绍普1, 2
作者信息 +

Variable fractional-order gradient descent method

  • LI Jiawei1, 2, SHEN Yongjun1, 2, YANG Shaopu1, 2
Author information +
文章历史 +

摘要

作为经典的凸优化算法,梯度下降法结合分数阶微积分理论,延伸出分数阶梯度下降法。与常规梯度下降法相比,阶次大于1的分数阶梯度下降法收敛速度快但是收敛精度低;而阶次小于1的分数阶梯度下降法收敛精度高但是收敛速度慢。为结合不同阶次分数阶梯度下降法的优点,解决收敛速度、收敛精度之间不可兼得的矛盾,结合已有的研究,为得到更好的优化算法性能,提出了三种改进的变阶次分数阶梯度下降法,并且通过典型算例验证了相关结论。

Abstract

The gradient descent method is a classical convex optimization algorithm.Here, combined with the theory of fractional-order advanced calculus, the fractional-order gradient descent method was investigated.It was shown that compared with the conventional gradient descent method, the fractional-order gradient descent method with the order larger than 1 has faster convergence speed and lower convergence accuracy, while it with the order less than 1 has higher convergence accuracy and slower convergence speed.In order to combine advantages of different fractional-order gradient descent methods and solve the contradiction between convergence speed and convergence accuracy, 3 improved variable fractional-order gradient descent methods were proposed based on the published study results to obtain better optimization algorithm performances.Typical examples were taken to verify relevant conclusions.

关键词

分数阶梯度下降法 / 可变阶次 / 收敛速度 / 收敛精度

Key words

fractional-order gradient descent method / variable order / convergence speed / convergence accuracy

引用本文

导出引用
李佳维1, 2,申永军1, 2,杨绍普1, 2. 变阶次分数阶梯度下降法的研究[J]. 振动与冲击, 2021, 40(9): 43-47
LI Jiawei1, 2, SHEN Yongjun1, 2, YANG Shaopu1, 2. Variable fractional-order gradient descent method[J]. Journal of Vibration and Shock, 2021, 40(9): 43-47

参考文献

[1]XUE Dingyu, ZHAO Chunna, CHEN Yangquan .Fractional order PID control of a DC-motor with elastic shaft: a case study [C]∥Proceedings of the 2006 American Control Conference.Minneapolis, 2006.
[2]张小龙, 魏井福, 东亚斌, 等.滚珠自动控制转子系统强迫振动研究(1/2次分数谐波振动)[J].振动与冲击, 2017, 36(21): 23-27.
ZHANG Xiaolong, WEI Jingfu, DONG Yabin, et al.Forced vibration of the rotor controlled by an automatic ball balancer(1/2 order subharmonic vibration)[J].Journal of Vibration and Shock, 2017, 36(21): 23-27.
[3]HARTLEY T T, LORENZO C F .Fractional-order system identification based on continuous order-distributions [J].Signal Processing,2003,83(11):2287-2300.
[4]林晓然.分数阶非线性系统动力学特性及其图像处理应用研究 [D].重庆:重庆大学,2018.
[5]STEPHEN B, LIEVEN V .Convex optimization [M].Cambridge: Cambridge University Press, 2004.
[6]WONG Chingchang,CHEN Chiachang .A hybrid clustering and gradient descent approach for fuzzy modeling [J].IEEE Transactions on Systems,Man,and Cybernetics,Part B: Cybernetics,1999,29(6):686-693.
[7]LIN Q, LOXTON R, XU C, et al.Parameter estimation for nonlinear time-delay system with noisy output measurements [J].Automatica, 2015, 60: 48-56.
[8]KRETSCHMER F,LEWIS B.An improved algorithm for adaptive filters processing [J].IEEE Transactions on Aerospace and Electronic Systems,1979, 1(14): 172-177.
[9]BALLA-ARABE S, GAO X B, WANG B.A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method[J].IEEE Transactions on Cybernetics, 2013, 43(3): 910-920.
[10]VAUDREY M A, BAUMANN W T, SAUNDERS  W R.Stability and operating constrains of adaptive LMS-based feedback control [J].Automatica,2003, 39(4): 595-605.
[11]LIN J Y, LIAO C W.New IIR filter-based adaptive algorithm in active noise control applications:commutation error-introduced LMS algorithm and associated convergence assessment by a deterministic approach [J].Automatica, 2008, 44(11): 2916-2922.
[12]PU Y F, ZHOU J L, ZHANG Y, et al.Fractional extreme value adaptive training method:fractional steepest descent approach [J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(4): 653-662.
[13]CHEN Y Q, GAO Q, WEI Y H, et al.Study on fractional order gradient methods [J].Applied Mathematics and Computation, 2017, 314: 310-321.
[14]程松松.分数阶LMS自适应滤波算法研究[D].合肥:中国科学技术大学,2018.
[15]李大字, 卢婷, 靳其兵.基于分数阶梯度下降法的分数阶非线性系统预测控制[J].系统仿真技术, 2017, 13(2): 127-131.
LI Dazi, LU Ting, JIN Qiping.Predictive control with fractional gradient descent for fractional-order nonlinear system [J].System Simulation Technology, 2017, 13(2): 127-131.
[16]CHENG S S, WEI Y H, CHEN Y Q, et al.An innovative fractional order LMS based on variable initial value and gradient order[J].Signal Processing, 2017, 133: 260-269.
[17]CUI R, WEI Y H, CHEN Y Q, et al.An innovative parameter estimation for fractional-order systems in the presence of outliers [J].Nonlinear Dynamics, 2017, 89(1): 453-463.
[18]CHENG S S, WEI Y H, SHENG D, et al.Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient [J].Signal Processing, 2018, 142: 1-10.
[19]
CORLISS G, LOWERY D.Choosing a stepsize for Taylor series methods for solving ODE'S[J].Journal of Computational and Applied Mathematics ,1977,3(4): 251-256.
[20]WEI Y H,GAO Q,CHEN Y Q,et al.Infinite series representation of fractional calculus[C]∥2019 Chinese Automation Congress.Hangzhou: CAC, 2019.

PDF(677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/