基于改进经验傅里叶分解的工作模态分析

周伟,冯仲仁,王雄江

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 48-54.

PDF(840 KB)
PDF(840 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 48-54.
论文

基于改进经验傅里叶分解的工作模态分析

  • 周伟,冯仲仁,王雄江
作者信息 +

Operational modal analysis based on improved empirical Fourier decomposition

  • ZHOU Wei, FENG Zhongren, WANG Xiongjiang
Author information +
文章历史 +

摘要

近年来,工作模态分析在结构参数识别中的地位逐步上升。针对环境激励下结构振动响应信噪比低的特点,引入自回归功率谱对经验傅里叶分解进行改进,并提出了一种基于改进经验傅里叶分解的结构工作模态分析方法。为了验证该方法的可行性和有效性,对四层模拟框架和某人行斜拉桥进行工作模态参数识别,并利用随机子空间所识别的结果进行对比。结果表明,该方法识别的模态参数与随机子空间的结果相当,并且在密集模态情况下,该方法具有一定优势。因此,改进经验傅里叶分解能为今后的结构模态识别提供参考。

Abstract

In recent years, the status of operational modal analysis in structural parameter identification is gradually rising.Here, aiming at low signal-to-noise ratio (SNR) of structural vibration response under environmental excitation, the auto-regressive (AR) power spectrum was introduced to improve the empirical Fourier decomposition, and a structural operational modal analysis method based on improved empirical Fourier decomposition (EFD) was proposed.In order to verify the feasibility and effectiveness of the proposed method, operational modal parameters of a 4-story simulated frame and a pedestrian cable-stayed bridge were recognized using this method, and the results were compared with those identified using the stochastic subspace identification (SSI).The results showed that modal parameters identified using the proposed method agree well with those identified using SSI; in case of dense modes, this method has certain advantages, so improving empirical Fourier decomposition can provide a reference for future structural modal identification.

关键词

模态参数识别 / 经验傅里叶分解(EFD) / 自回归功率谱 / 环境激励

Key words

modal parameter identification / empirical Fourier decomposition (EFD) / auto regression (AR) power spectrum / ambient excitation

引用本文

导出引用
周伟,冯仲仁,王雄江. 基于改进经验傅里叶分解的工作模态分析[J]. 振动与冲击, 2021, 40(9): 48-54
ZHOU Wei, FENG Zhongren, WANG Xiongjiang. Operational modal analysis based on improved empirical Fourier decomposition[J]. Journal of Vibration and Shock, 2021, 40(9): 48-54

参考文献

  [1]秦超,颜王吉,孙倩,等.基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J].工程力学, 2019, 36(10): 212-222.
QIN Chao, YAN Wangji, SUN Qian, et al.Operational modal analysis of bridge engineering based on Bayesian spectral density approach using a variable separation technique[J].Engineering Mechanics, 2019, 36(10): 212-222.
[2]吴杰,徐洪俊,张其林.模态识别的Bayesian TDD-FFT法及其应用[J].振动与冲击, 2019, 38(15): 142-148.
WU Jie, XU Hongjun, ZHANG Qilin.Bayesian TDD-FFT method for modal identification and its application[J].Journal of Vibration and Shock, 2019, 38(15): 142-148.
[3]胡佳星,李正农,王澈泉,等.台风激励下海口市某高层建筑模态参数识别[J].建筑结构学报, 2020(2): 71-82.
HU Jiaxing, LI Zhengnong, WANG Chequan, et al.Modal parameter identification of a high-rise building in Haikou city during typhoons[J].Journal of Building Structures, 2020(2): 71-82.
[4]祝志文,陈魏,李健朋,等.多塔斜拉桥加劲索涡激振动实测与时域解析模态分解[J].中国公路学报, 2019, 32(10): 247-256.
ZHU Zhiwen, CHEN Wei, LI Jianpeng, et al.Field observation of vortex-induced vibration of stiffening cables in a multi-tower cable-stayed bridge with application of analytical mode decomposition[J].China Journal of Highway and Transport, 2019, 32(10): 247-256.
[5]赵斌,封周权,陈政清.环境激励下基于ESMD的结构模态参数识别方法[J].噪声与振动控制, 2019, 39(5): 173-178.
ZHAO Bin, FENG Zhouquan, CHEN Zhengqing.Structural modal parameter identification under ambient excitation based on extreme-point symmetric mode decomposition[J].Noise and Vibration Control, 2019, 39(5): 173-178.
[6]PEREZ-RAMIREZ C A,  AMEZQUITA-SANCHEZ J P, ADELI  H.New methodology for modal parameters identification of smart civil structures using ambient vibrations and synchrosqueezed wavelet transform[J].Engineering Applications of Artificial Intelligence, 2016,48: 1-12.
[7]AMEZQUITA-SANCHEZ J P, PARK H S, ADELI H.A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform[J].Engineering Structures, 2017,147: 148-159.
[8]XIN Y, HAO H, LI J.Operational modal identification of structures based on improved empirical wavelet transform[J].Structural Control and Health Monitoring, 2019,26(7): 1-21.
[9]BAGHERI A, OZBULUT O E, HARRIS D K.Structural system identification based on variational mode decomposition[J].Journal of Sound and Vibration, 2018, 417: 182-197.
[10]ZHOU Wei, FENG Zhongren, WANG Xiongjiang, et al.Empirical Fourier decomposition[J/OL].http:∥arxiv.org/abs/1912.00414, 2019/12/3.
[11]SINGH P, JOSHI S D, PATNEY R K, et al.The Fourier decomposition method for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2017, 473(2199):20160871.
[12]BROWNJOHN J M W, BOCIAN M, HESTER D, et al. Footbridge system identification using wireless inertial measurement units for force and response measurements[J].Journal of Sound and Vibration, 2016, 384: 339-355.

PDF(840 KB)

Accesses

Citation

Detail

段落导航
相关文章

/