研究对输电塔线体系随机脉动风场进行高效数值模拟的方法。根据输电塔线体系结构特点和风场特性,对于输电塔,可只考虑顺风向与横风向的脉动风,并认为两个方向的风速相互独立,将其简化为两个独立一维风场。而对于输电线,考虑横风向与竖风向的脉动风,并认为两者存在相关性, 进行二维多变量脉动风场模拟。为减少传统谐波叠加法中对功率谱矩阵Cholesky分解的计算量,采用Hermite插值进行目标函数拟合,通过快速傅里叶变换技术加快三角级数的叠加。此外,应用正交随机变量的谱表示法,将随机函数表示为两个基本随机变量的多项式的正交函数,与已有的相关方法相比,随机变量降维后所需生成的随机过程的代表性时程的数量可以更少。最后数值算例验证了所采用模拟方法的高效性。
Abstract
Here, effective simulation of stochastic fluctuating wind field of transmission tower-line system was investigated.For the transmission tower, only downwind and crosswind fluctuating winds were considered and simplified as two independent 1-D wind fields.For transmission lines, fluctuating winds in cross and vertical directions were considered and simulated as correlated 2-D fluctuating wind fields.Hermite interpolation was used to fit the objective function, and reduce computation amount of Cholesky decomposition of power spectral matrix in the traditional harmonic superposition method.Fast Fourier transform (FFT) technique was also adopted to accelerate the superposition of triangular series.In addition, the spectral representation method of orthogonal random variables was used to express a random function as an orthogonal function with 2 elementary random variables in form of polynomials.Compared with other existing approaches, the number of representative time histories of generated random processes needed after dimension reduction of random variables could be less.Finally, numerical examples verified the high efficiency of the proposed simulation method.
关键词
脉动风场 /
输电塔线 /
Hermite插值 /
谱表示 /
降维模拟
{{custom_keyword}} /
Key words
fluctuating wind field /
transmission tower-line system /
Hermite interpolation /
spectral representation /
dimension reduction simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]肖玉凤,肖仪清,段忠东,等.CE风场模型在中国华南沿海地区的适用性研究[J],工程力学, 2010, 27(10): 251-256.
XIAO Yufeng, XIAO Yiqing, DUAN Zhongdong, et al.The applicability of CE wind-field model in south China coastal region[J].Engineering Mechanics, 2010, 27(10): 251-256.
[2]白海峰, 李宏男.大跨越输电塔线体系随机脉动风场模拟研究[J].工程力学, 2007, 24(7):146-151.
BAI Haifeng, LI Hongnan.Simulation study of stochastic fluctuating wind field on large span elatricity transmission tower-line system[J].Engineering Mechanics, 2007, 24(7):146-151.
[3]沈国辉,黄俏俏,郭勇,等.脉动风场的模拟方法及其在输电线路风振计算中的应用[J].空气动力学报, 2012, 31(1):69-74.
SHEN Guohui, HUANG Qiaoqiao, GUO Yong, et al.Simulation methods of fluctuating wind field and its application in wind-induced response of transmission lines[J].Acta Aerodynamica Sinica, 2012, 31(1):69-74.
[4]楼文娟, 吴登国, 刘萌萌,等.山地风场特性及其对输电线路风偏响应的影响[J].土木工程学报, 2018, 51(10): 46-55.
LOU Wenjun, WU Dengguo, LIU Mengmeng, et al.Properties of mountainous terrain wind field and their influence on wind-induced swing of transmission lines[J].China Civil Engineering Journal, 2018, 51(10): 46-55.
[5]韩枫, 肖正直, 李正良,等.1 000 kV汉江大跨越输电塔线体系三维脉动风场模拟[J].高电压技术, 2009, 35(5):999-1004.
HAN Feng, XIAO Zhengzhi, LI Zhengliang, et al.3D stochastic wind field simulation of 1 000 kV hanjiang long span transmission line system[J].High Voltage Engineering, 2009, 35(5): 999-1004.
[6]吕利民,陈波,谢文平,等.大跨度输电线的脉动风荷载模拟 [J].广东电力, 2015, 28(8):106-109.
L Limin, CHEN Bo, XIE Wenping, et al.Stimulation on impulsive wind load of large span power transmission line[J].Guangdong Electric Power, 2015, 28(8):106-109.
[7]RICE S O. Mathematical analysis of random noise[J].Bell Labs Technical Journal, 2013, 24(1):46-156.
[8]YANG J N. On the normality and accuracy of simulated random processes [J].Journal of Sound & Vibration, 1973, 26(3):417-428.
[9]DING Q, ZHU L, XIANG H.Simulation of stationary Gaussian stochastic wind velocity field[J].Wind & Structures an International Journal, 2006, 9(3):231-243.
[10]罗俊杰, 韩大建.大跨度结构随机脉动风场的快速模拟方法[J].工程力学, 2008, 25(3):96-101.
LUO Junjie, HAN Dajian.A fast simulation method of stochastic wind field for long-span structures[J].Engineering Mechanics, 2008, 25(3): 96-101.
[11]TAO T, WANG H, YAO C, et al.Efficacy of interpolation-enhanced schemes in random wind field simulation over long-span bridges [J].Journal of Bridge Engineering, 2018, 23(3): 04017147.
[12]CHEN J B, LI J.Optimal determination of frequencies in the spectral representation of stochastic processes[J].Computational Mechanics, 2013, 51(5):791-806.
[13]刘章军,刘增辉.随机脉动风场的谱表示降维模拟[J].振动工程学报,2018,31(1):49-56.
LIU Zhangjun, LIU Zenghui.Dimension reduction based spectral representation of stochastic fluctuation wind field simulation[J].Journal of Vibration Engineering, 2018, 31(1):49-56.
[14]SIMIU E, SCANLAN R H.Wind effects on structures[M].3rd ed.New York: John Wiley and Sons, 1996.
[15]DAVENPORT A G. The dependence of wind loads on meteorological parameters[J].Wind Effects on Buildings & Structures, 1967, 1:19-82.
[16]DEODATIS G. Simulation of ergodic multivariate stochastic processes [J].Journal of Engineering Mechanics, 1996, 122(8):778-787.
[17]陶天友, 王浩.基于Hermite插值的简化风场模拟[J].工程力学, 2017(3):187-193.
TAO Tianyou, WANG Hao.Reduced simulation of the wind field based on Hermite interpolation[J].Engineering Mechanics, 2017(3):187-193.
[18]LIU Z J, LIU Z H, PENG Y B.Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods [J].Journal of Sound and Vibration, 2018, 418:144-162.
[19]LIU Z J, LIU Z X, PENG Y B.Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes[J].Journal of Sound and Vibration,2017, 408:168-189.
[20]FANG K T, WANG Y.Number-theoretic methods in statistics[M].London: Chapman and Hall, 1994.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}