改进EWT_MPE模型在矿山微震信号特征提取中的应用

程铁栋,易其文,吴义文,戴聪聪,蔡改贫,杨丽荣,尹宝勇

振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 92-101.

PDF(1734 KB)
PDF(1734 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (9) : 92-101.
论文

改进EWT_MPE模型在矿山微震信号特征提取中的应用

  • 程铁栋,易其文,吴义文,戴聪聪,蔡改贫,杨丽荣,尹宝勇
作者信息 +

Application of improved EWT_MPE model in feature extraction of mine micro-seismic signals

  • CHENG Tiedong, YI Qiwen, WU Yiwen, DAI Congcong, CAI Gaipin, YANG Lirong, YIN Baoyong
Author information +
文章历史 +

摘要

针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWT_MPE(经验小波变换_多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用仿真信号验证了改进算法的可行性和准确性。将实际采集到的微震与爆破信号进行改进EWT分解,借助相关性分析从分解得到的本征模态函数(intrinsic mode function, IMF)分量中筛选出最优分量IMF1~IMF5。进而将筛选到的IMF分量进行重构,并计算重构信号的MPE值。应用GK模糊聚类算法对岩体微震与爆破振动信号进行分类识别。结果表明,微震信号的MPE值要小于爆破信号的MPE值,且当嵌入维数m=5,尺度因子s=12,延迟时间τ=1时,两种信号的MPE值差异最大。基于改进EWT_MPE_GK模糊聚类算法的分类识别准确率达到93.5%,平均模糊熵(E)更接近0、分类系数(C)更接近1,与传统EWT_MPE_GK模糊聚类和EMD_MPE_GK模糊聚类相比,其聚类效果更优、识别准确率分别提高了3%和5.5%。

Abstract

Here, aiming at the problem of mine micro-seismic and blast vibration signals being difficult to automatically identify, a signal feature extraction method based on improved EWT_MPE (experience wavelet transform _multi-scale permutation entropy)  was proposed, and applied in mine micro-seismic signal feature extraction.Firstly, a new improved method was proposed for the over-segmentation problem of EWT in previous processing complex signal spectra, and the feasibility and correctness of the improved algorithm were verified using simulated signals.Secondly, the actual collected micro-seismic and blast signals were decomposed using the improved EWT, and by means of correlation analysis, the optimal components IMF1-IMF5 were selected from the decomposed IMF (intrinsic mode function) components.The selected IMF components were used to reconstruct a signal, and calculate its MPE value.Finally, the GK fuzzy clustering algorithm was used to classify and identify micro-seismic and blast vibration signals of rock mass.The results showed that micro-seismic signal’s MPE value is smaller than blast signal’s; when the embedding dimension m=5, the scale factor s=12, and the time delay =1, the difference of the two signals’ MPE values is the largest; the classification recognition correctness rate based on the improved EWT_MPE_GK fuzzy clustering algorithm reaches 93.5%, and the average fuzzy entropy (E) is closer to 0, and the classification coefficient (C) is closer to 1; compared with the traditional EWT_MPE_GK fuzzy clustering and EMD_MPE_GK fuzzy clustering, the improved EWT_MPE_GK fuzzy clustering algorithm’s effect is better and its recognition correctness rate rises by 3% and 5.5%, respectively.

关键词

经验小波变换 / 多尺度排列熵 / Gustafson-kessel (GK)模糊聚类 / 特征提取 / 分类识别

Key words

empirical wavelet transform / multi-scale permutation entropy / Gustafson-kessel (GK) fuzzy clustering / feature extraction / classification recognition

引用本文

导出引用
程铁栋,易其文,吴义文,戴聪聪,蔡改贫,杨丽荣,尹宝勇. 改进EWT_MPE模型在矿山微震信号特征提取中的应用[J]. 振动与冲击, 2021, 40(9): 92-101
CHENG Tiedong, YI Qiwen, WU Yiwen, DAI Congcong, CAI Gaipin, YANG Lirong, YIN Baoyong. Application of improved EWT_MPE model in feature extraction of mine micro-seismic signals[J]. Journal of Vibration and Shock, 2021, 40(9): 92-101

参考文献

[1]尚雪义, 李夕兵, 彭康,等.基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法[J].岩土工程学报,2016,38(10):1849-1858.
SHANG Xueyi, LI Xibing, PENG Kang, et al.Feature extraction and classification of mine microseism and blast based on EMD-SVD[J].Chinese Journal of Geotechnical Engineering,2016,38(10):1849-1858.
[2]赵国彦, 邓青林, 马举.基于FSWT时频分析的矿山微震信号分析与识别[J].岩土工程学报,2015,37(2):306-312.
ZHAO Guoyan, DENG Qinglin, MA Ju, et al.Recognition of mine microseismic signals based on FSWT time-frequency analysis[J].Chinese Journal of Geotechnical Engineering,2015,37(2):306-312.
[3]江飞飞, 周辉,刘畅,等.地下金属矿山岩爆研究进展及预测与防治[J].岩石力学与工程学报,2019,38(5): 956-972.
JIANG Feifei, ZHOU Hui, LIU Chang, et al.Progress,prediction and prevention of rockburst in underground metal mines[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(5): 956-972.
[4]唐礼忠, 杨承祥, 潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
TANG Lizhong, YANG Chengxiang, PAN Changliang.Optimization of microseismic monitoring
Network for large-scale deep well mining[J].Chinese Journal of Rock Mechanics and Engineering,2006, 25(10):2036-2042.
[5]董陇军, 李夕兵, 唐礼忠, 等.无需预先测速的微震震源定位的数学形式及震源参数确定[J].岩石力学与工程学报,2011,30(10):2057-2067.
DONG Longjun, LI Xibing, TANG Lizhong, et al.Mathematical functions and parameters for microseismic source location without pre-measuring speed[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2057-2067.
[6]尚雪义, 李夕兵, 彭康, 等.FSWT-SVD模型在岩体微震信号特征提取中的应用[J].振动与冲击,2017, 36(14):52-60.
SHANG Xueyi, LI Xibing, PENG Kang, et al.Application of FSWT-SVD model in the feature extraction of rock mass microseismic signals[J].Journal of Vibration and Shock,2017,36(14):52-60.
[7]程铁栋, 吴义文, 罗小燕, 等.基于EWT_Hankel_SVD的矿山微震信号特征提取及分类方法[J].仪器仪表学报,2019,40(6):181-191.
CHENG Tiedong, WU Yiwen, LUO Xiaoyan, et al.Feature extraction and classification method of mine microseismic signals based on EWT_Hankel_SVD[J].Chinese Journal of Scientific Instrument, 2019, 40(6):181-191.
[8]WANG C L. Identification of early-warning key point for rockmass instability using acoustic emission/microseismicactivity monitoring[J].International Journal of Rock Mechanics and Mining Sciences, 2014,71:171-175.
[9]马春驰, 李天斌, 张航,等.基于EMS微震参数的岩爆预警方法及探讨[J].岩土力学,2018,39(2):765- 774.
MA Chunchi, LI Tianbin, ZHANG Hang, et al.An evaluation and early warning method for rockburst based on EMS microseismic source parameters[J].Rock and Soil Mechanics,2018,39(2):765-774.
[10]李伟.基于LMD和模式识别的矿山微震信号特征提取及分类方法[J].煤炭学报,2017,42(5):1156- 1164.
LI Wei. Feature extraction and classification method of mine microseismic signals based on LMD and pattern recognition[J].Journal of China Coal Society,2017,42(5):1156-1164.
[11]曹安业, 窦林名, 秦玉红, 等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2): 146-149.
CAO Anye, DOU Linming, QIN Yuhong, et al.Characteristic of microseismic monitoring signal in high stressed zone [J].Journal of Mining & Safety Engineering,2007,24(2):146-149.
[12]陆菜平, 窦林名, 吴兴荣, 等.煤岩冲击前兆微震频谱演变规律的试验与实证研究[J].岩石力学与工程学报,2008,27(3):519-525.
LU Caiping, DOU Linming, WU Xingrong, et al.Experimental and empirical research on frequency spectrum evolvement rule of rock burst precursory microseismic signals of coal-rock[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):519-525.
[13]赵毅鑫,姜耀东,王涛, 等.“两硬”条件下冲击地压微震信号特征及前兆识别[J].煤炭学报,2012,37 (12):1960-1966. 
ZHAO Yixin, JIANG Yaodong, WANG Tao, et al.Features of microseismic events and precursors of rock burst in underground coal mining with hard roof[J].Journal of China Coal Society,2012,37(12):1960-1966.
[14]ALLMANN B P, SHEARER P M, HAUKSSON E.Spectral discrimination be tween quarry blasts and earthquakes in Southern California[J].Bulletin of the Seismological Society of America,2008,98(4):2073-2079.
[15]吴响, 钱建生, 王海燕, 等.微震信号多尺度非线性特征提取与辨识研究[J].仪器仪表学报,2014,35 (5):969-975.
WU Xiang, QIAN Jiansheng, WANG Haiyan, et al.Study on multi-scale nonlinear feature extraction and signal identification for microseismic signal[J].Chinese Journal of Scientific Instrument,2014,35(5):969-975.
[16]朱权洁, 姜福兴, 于正兴, 等.爆破震动与岩石破裂微震信号能量分布特征研究[J].岩石力学与程学报,2012,31(4):723-730.
ZHU Quanjie, JIANG Fuxing, YU Zhengxing, et al.Study on energy distribution characters about blasting vibration and rock fracture microseismic signal[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(4):723-730.
[17]唐守锋, 童敏明, 潘玉祥, 等.煤岩破裂微震信号的小波特征能谱系数分析法[J].仪器仪表学报,2011,32(7):1521-1527.
TANG Shoufeng, TONG Minming, PAN Yuxiang, et al.Energy spectrum coefficient analysis of wavelet features for coal rupture microseismicsignal[J].Chinese Journal of Scientific Instrument,2011,32(7):1521-1527.
[18]朱权洁, 姜福兴, 尹永明, 等.基于小波分形特征与模式识别的矿山微震波形识别研究[J].岩土工程学报,2012,34(11):2036-2042.
ZHU Quanjie, JIANG Fuxing, YIN Yongming, et al.Classification of mine microseismic events based on wavelet-fractal method and pattern recognition[J].Chinese Journal of Geotechnical Engineering, 2012,34(11):2036-2042.
[19]GILLES J. Empirical wavelet transform [J].IEEE Transactions on Signal Processing,2013,61(16):3999-4010 .
[20]李志农, 朱明, 褚福磊, 等.基于经验小波变换的机械故障诊断方法研究[J].仪器仪表学报,2014,35 (11):2423-2432.
LI Zhinong, ZHU Ming, CHU Fulei, et al.Mechanical fault diagnosis method based on empirical wavelet transform[J].Chinese Journal of Scientific Instrument,2014,35(11):2423-2432.
[21]张瑞, 邓艾东, 司晓东, 等.一种新的声发射信号消噪及故障诊断方法[J].振动与冲击,2018,37(4): 75-81.
ZHANG Rui, DENG Aidong, SI Xiaodong, et al.A new method for acoustic emission signal de-noised and fault diagnosis[J].Journal of Vibration and Shock,2018,37(4):75-81.
[22]MERAINANI B,  RAHMOUNE C, BENAZZOUZ D, et al.A novel gearbox fault feature extraction and classification using Hilbert empirical wavelet transform, singular value decomposition, and SOM neural network[J].Journal of Vibration and Control,2018,24(12):2512-2531.
[23]陈东宁, 张运东, 姚成玉, 等.基于FVMD多尺度排列熵和GK模糊聚类的故障诊断[J].机械工程学报2018,54(14):16-27.
CHEN Dongning, ZHANG Yundong, YAO Chengyu, et al.Fault diagnosis based on FVMD multi-scale permutation entropy and GK fuzzy clustering[J].Journal of Mechanical Engineering,2018,54(14):16-27.
[24]郑小霞, 周国旺, 任浩瀚, 等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击,2017,36 (22):22-28.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al.Rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J].Journal of Vibration and Shock,2017,36(22):22-28.
[25]郑近德, 程军圣, 杨宁.多尺度排列熵及其在滚动轴承故障诊断中的应用[J].中国机械工程,2013,24 (19):2641-2646.
ZHENG Jinde, CHENG Junsheng, YANG Ning.Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis[J].China Mechanical Engineering,2013, 24(19):2641-2646.
[26]徐海翔, 崔正湃, 吴林林, 等.基于最大熵谱估计的风电功率周期特性研究[J].太阳能学报,2018,39 (9):2425-2431.
XU Haixiang, CUI Zhengpai, WU Linlin, et al.Study on periodicity of wind power based on maximum entropy spectrum estimation[J].Acta Energiae Solari Sinica, 2018,39(9):2425-2431.
[27]胡玉伟, 马萍, 杨明, 等.一种时频结合分析的仿真结果动态一致性检验方法[J].系统工程与电子技术,2013,35(3):643-649.
HU Yuwei, MA Ping, YANG Ming, et al.Dynamic consistency test method combining time domain with frequency domain for simulation results[J].Systems Engineering and Electronics,2013,35(3):643-649.
[28]AZIZ W, ARIF M.Multiscale permutation entropy of physiological time series[C]∥Proceeding of IEEE International Multi-topic Conference.IN-MIC,2005.
[29]戴聪聪, 程铁栋, 宗路, 等.基于改进EEMD的红砂岩声发射信号的频谱特性研究[J].振动与冲击,2018,37(16):118-123.
DAI Congcong, CHEN Tiedong, ZONG Lu, et al.A study on spectrum characteristics of red sandstone acoustic emission signals based on improved EEMD[J].Journal of Vibration and Shock,2018, 37(16):118-123.
[30]DAVARI A, MARHABAN M H, NOOR S B M, et al.Parameter estimation of K-distributed sea clutter based on fuzzy inference and Gustafson-Kessel clustering[J].Fuzzy Sets and Systems,2011,163(1): 45-53.
[31]陈学军, 杨永明.采用经验小波变换的风力发电机振动信号消噪[J].浙江大学学报(工学版),2018,52(5):988-995.
CHEN Xuejun, YANG Yongming.De-noising for vibration signals of wind power generator using empirical wavelet transform[J].Journal of Zhejiang University (Engineering Science),2018,52(5):988-995.
[32]LUO Zhijun, LIU Tao, YAN Shaoze, et al.Revised empirical wavelet transform based on auto-regressive power spectrum and its application to the mode decomposition of deployable structure[J].Journal of Sound and Vibration, 2018, 431:70-87.
[33]PU Shi, YANG Wenxian, SHENG Meiping, et al.An enhanced empirical wavelet transform for features extraction from wind turbine condition monitoring signals[J].Energies, 2017,10(7):972.
[34]徐峰, 刘云飞.基于EMD-SVD的声发射信号特征提取及分类方法[J].应用基础与工程科学学报,2014, 22(6):1238-1247.
XU Feng, LIU Yunfei.Feature extraction and classification method of acoustic emission signals generated from plywood damage based on EMD-SVD[J].Journal of Basic Science and Engineering,2014,22(6):1238-1247.

PDF(1734 KB)

Accesses

Citation

Detail

段落导航
相关文章

/