考虑扣件温频变的车轨桥垂向耦合系统振动能量研究

刘林芽,李辉,秦佳良,左志远,孟宪金

振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 161-168.

PDF(2065 KB)
PDF(2065 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 161-168.
论文

考虑扣件温频变的车轨桥垂向耦合系统振动能量研究

  • 刘林芽,李辉,秦佳良,左志远,孟宪金
作者信息 +

Vibration energy of vehicle-rail-bridge vertical coupled system considering fastener temperature frequency variation

  • LIU Linya, LI Hui, QIN Jialiang, ZUO Zhiyuan, MENG Xianjin
Author information +
文章历史 +

摘要

通过对扣件进行定频变温试验,结合温频等效原理与高阶分数导数FVMP模型建立扣件的温频变动态力学模型,并在车-轨-桥耦合系统中采用新建模型模拟扣件,基于功率流法系统地分析与评价扣件温频变动态力学性能对车轨桥耦合系统振动能量分布与传递的影响。结果表明:考虑扣件动参数频变会使中高频段内的轨道结构振动能量增大,对低频段的轨道结构振动能量影响较小,且对钢轨传递给轨道板的振动能量影响较大,但对桥梁的振动能量传递影响较小;温度的降低会导致轨道结构的振动能量增大,且会增大61HZ后中高频段内钢轨传递给轨道板的振动能量,但对桥梁的振动能量传递影响较小;扣件温频变对轨道结构振动能量的分布有较大影响,但对于轨下结构的能量传递影响较小。因此,在轨道桥梁耦合求解振动能量时必须要考虑扣件温频变特性,否则将难以精准预测轨道结构振动能量分布特性。

Abstract

The temperature-frequency variable dynamic mechanical model of the rail fastener is established by combining the principle of temperature-frequency equivalence and the high-order fractional derivative FVMP model through the constant-frequency variable-temperature test of the fastener, and the newly-built model is used for simulation in the vehicle-track-bridge vertical coupling system Fasteners. Then, based on the power flow method to systematically analyze and evaluate the influence of dynamic mechanical parameters for the rail fasteners relating to environmental temperature and exciting frequency on the vibration energy distribution and transmission of the track structure. The conclusions indicate that considering the frequency-dependent dynamic parameters of the rail fasteners, the vibration energy of the track structure in the middle-high frequency bands would be increased, and the vibration energy of the track structure in the low frequency-domain random would less affected. Moreover, it had a great impact on the vibration energy transmitted from the rail to the track plate. However,it had little influenced on vibration energy transfer of  bridge, But has little effect on the vibration energy transfer of the bridge; With reduction of temperature the vibration energy of the track structure would increases, and the vibration energy transmitted to the track plate in the middle-high frequency bands after 61HZ would increases. Meanwhile, it had a small effect to the vibration energy transmission of slabs and bridges; the temperature-frequency change of fasteners has a greater impact on the distribution of vibration energy of the track structure, but has a small effect on the energy transmission of the under-rail structure. Therefore, the temperature-frequency characteristics of fasteners must be considered when solving the vibration energy of the track and bridge coupling, otherwise it will be difficult to accurately predict the vibration energy distribution characteristics of the track structure.

关键词

温频变特性 / FVMP模型 / 车-轨-桥耦合振动 / 功率流 / 振动能量

Key words

temperature frequency variation characteristics / FVMP model;vehicle-rail-bridge coupled vibration / power flow / vibration energy

引用本文

导出引用
刘林芽,李辉,秦佳良,左志远,孟宪金. 考虑扣件温频变的车轨桥垂向耦合系统振动能量研究[J]. 振动与冲击, 2022, 41(1): 161-168
LIU Linya, LI Hui, QIN Jialiang, ZUO Zhiyuan, MENG Xianjin. Vibration energy of vehicle-rail-bridge vertical coupled system considering fastener temperature frequency variation[J]. Journal of Vibration and Shock, 2022, 41(1): 161-168

参考文献

[1] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures, Part I: introduction and approximate analysis of beam and plate-like foundations[J]. Journal of Sound and Vibration,1980,68(1):59-75.
[2] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures, Part II: Wave Propagation and Power Flow in Beam-stiffened Plates [J]. Journal of Sound and Vibration, 1980, 68(1): 77-96.
[3] Jiang H, Gao L. Analysis of the Vibration Characteristics of Ballastless Track on Bridges Using an Energy Method[J]. Applied Sciences. 2020, 10(7): 2289.
[4] 谷爱军, 范俊杰. 浮置板轨道竖向振动能量传递分析[J]. 铁道学报,2004,26(5):125-128.
Gu Ai-jun, Fang Jun-jie. Analysis of vertical vibration energy transmission of the floating slab track structure[J]. Journal of the china railway society, 2004, 26(5): 125-128.
[5] 顾民杰,励吾千,李奇. 桥梁截面形式对轨道交通高架噪声的影响[J]. 西南交通大学学报. 2019, 54(04): 715-723.
Gu Ming-jie, Li Wu-qian, Li Qi. Influence of section types on noise from elevated rail transit lines[J]. Journal of southwest jiaotong university. 2019, 54(04): 715-723.
[6] 李增光,吴天行. 铁道车辆-轨道-高架桥耦合系统振动功率流分析[J]. 振动与冲击. 2010(11): 78-82.
Li Zeng-guang, Wu Tian-xing. Analysis of vibration power flow for a railway vehicle-track -viaduct coupled system[J]. Journal of vibration and shock, 2010(11): 78-82.
[7] Li Q, Wu D J. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method[J]. Journal of Sound and Vibration , 2013, 332(18): 4153-4163.
[8] 付娜,刘钰,赵振航,等. 减振型双块式无砟轨道振动能量特性研究[J]. 铁道学报. 2018, 40(10): 111-118.
Fu Na, Liu Yu, Zhao Zhen-hang, et al. Study of Vibration Energy Properties of Double-block Ballastless Damping Track[J]. Journal of the china railway society[J]. Journal of the china railway society, 2018, 40(10): 111-118.
[9] 韦凯, 王丰, 牛澎波, 王绍华, 王平. 钢轨扣件弹性垫板的动态黏弹塑性力学试验及理论表征研究[J]. 铁道学报, 2018, 40(12): 115-122.
Wei Kai, Wang Feng, Niu Peng-bo, et al. Experimental investigation and theoretical model of viscoelastic and plastic dynamic properties of rail pads[J]. Journal of the china railway society, 2018, 40(12): 115-122.
[10] Liu L Y, Zuo Z Y, Zhou Y L, et al. Insights into the Effect of WJ-7 Fastener Rubber Pad to Vehicle-Rail-Viaduct Coupled Dynamics[J]. Applied Sciences. 2020, 10(5): 1889.
[11] 刘林芽,卢沛君,秦佳良. 基于扣件FVMP模型的车-轨耦合随机振动分析[J]. 铁道学报. 2019, 41(05): 93-100.
Liu Lin-ya, Lu Pei-jun, Qin Jia-liang. Random vibration analysis of vehicle-track coupling system based on fastener FVMP model[J]. Journal of the china railway society, 2019, 41(05): 93-100.
[12] 侯宏, 高星, 孙亮, 杨建华. 变频变温条件粘弹材料参数化数学模型[J]. 振动与冲击, 2013, 32(21):209-213.
Hou Hong, Gao Xing, Sun Liang, et al. Parameterized mathematical model of a viscoelastic material under variations of temperature and frequency[J]. Journal of vibration and shock, 2013, 32(21):209-213.
[13] 雷晓燕. 高速铁路轨道动力学:模型、算法与应用[M]. 科学出版社, 2015.
Lei Xiao-yan. High speed railway track dynamics: model, algorithm and application[M]. Science Press, 2015.
[14] Jiang H, Gao L. Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method[J]. Symmetry. 2020, 12(1): 69.
[15] Liu L Y, Qin J L, Liu Q M, et al. Spectral Analysis of Train-Rail-Bridge Coupling System Considering Frequency-Dependent Stiffness of Rail Fastening Systems [J]. Journal of Marine Science and Technology. 2019, 27(2): 114-12.

PDF(2065 KB)

488

Accesses

0

Citation

Detail

段落导航
相关文章

/