针对全回转舵桨液压系统出现的回转抖动现象,基于AMESim搭建了含平衡阀的回转液压系统仿真模型,详细分析了平衡阀的最大节流流量、阀芯行程-通流面积特性对其动态特性的影响。结果表明:平衡阀控制压力的周期性波动会导致阀芯位置、通流面积的波动,是含平衡阀系统发生回转抖动现象的根本原因;当CB系列平衡阀的最大节流流量略小于或者等于系统设计流量时,回转动作更容易获得较好的平稳性;当含平衡阀系统的设计流量小于平衡阀最大节流流量时,CB系列平衡阀的通流面积梯度越大则回转抖动越严重,反之回转动作越平稳,所以全节流型平衡阀更容易获得平稳性,但这是以损耗回转速度为代价的;MBE*改进型平衡阀阀芯的有效行程大,有效地降低了通流面积对阀芯行程的敏感度,不仅在系统流量较小时能够获得良好的稳定性,而且在设计流量较大时仍能保持较低的压力损失。
Abstract
Aimed at the rotation jitter phenomenon in the hydraulic system of azimuth thruster, a simulation model of the rotary hydraulic system with counterbalance valves was built based on AMESim,the influence of the counterbalance valve’s maximum throttle flow rate and spool stroke-flow area characteristics on its dynamic characteristics were analyzed. The simulation results show that periodic fluctuation of the control pressure of the counterbalance valve will lead to fluctuations in the spool position and flow area, which is the root cause of rotation jitter in the hydraulic system with counterbalance valves. When the maximum throttling flow rate of the CB series counterbalance valve is slightly less than or equal to the system design flow rate, the slewing action is more likely to achieve better smoothness. When the design flow rate of the hydraulic system with the counterbalance valve is less than the maximum throttling flow rate of the counterbalance valve, the larger the flow area gradient of the CB series counterbalance valve,the more severe of the rotation jitter, and vice versa, the smoother the slewing action, so the full throttle type counterbalance valve is easier to obtain smoothness, but this is at the expense of the loss of slewing speed. The large effective spool stroke of the MBE* improved counterbalance valve effectively reduces the sensitivity of the flow area to spool stroke, resulting in good stability at low system flow rates and low pressure loss at higher design flow rates.
关键词
全回转舵桨 /
平衡阀 /
回转抖动 /
控制方法
{{custom_keyword}} /
Key words
Azimuth thruster /
Counterbalance valve /
Rotation jitter /
Control method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Desai-patil V,Ayare A,Mahajan B,et al.A review of azimuth thruster[J]. SSRG International Journal of Mechanical Engineering,2015,2(10):21-23.
[2] 陈建平,花业楠.全回转舵桨液压系统浅析[J].江苏船舶,1994(01):32-34.
ZHANG Jianping,HUA Yenan. Analysis of hydraulic system of azimuth thruster[J].Jiangsu Ship,1994(01): 32-34.
[3] 李威,叶晓明,姜羽泽,等.大功率全回转推进器水动力学性能研究[J].舰船科学技术,2018,40(21):55-59.
LI Wei,YE Xiaoming,JIANG Yuze, et al. Research on hydrodynamic performance of high-power azimuth propulsor[J]. Ship Science and Technology,2018,40(21):55-59.
[4] 王培生.全回转推进器的水动力性能研究[D].哈尔滨:哈尔滨工程大学,2008.
WANG Peisheng. Research on hydrodynamic performance of full-revolving propulsors[D].Harbin: Harbin Engineering University,2008.
[5] MIYAKAWA Shimpei. Stability of a hydraulic circuit with a counterbalance valve[J]. Bulletin of JSME,1978,21:1750-1756.
[6] 张海平.液压平衡阀应用技术[M].北京:机械工业出版社,2017.
ZHANG Haiping. Hydraulic Counterbalance Valve Application Technology [M].Beijing: Mechanical Industry Press,2017.
[7] 陈晋市,刘昕晖,王同建,等.平衡阀对起重机起升系统抖动现象的影响因素[J].中国工程机械学报,2010,8(01):46-50.
CHEN Jinshi,LIU Xihui,WANG Tongjian,et al. Effects of balance valves on shaking from crane lifting systems[J].Chinese Journal of Construction Machinery, 2010,8(01):46-50.
[8] 闵为,王东,郑直,等.压力调节锥阀开启过程振动特性研究[J].振动与冲击,2020,39(18):181-187.
MIN Wei,WANG Dong,ZHENG Zhi,et al. Vibration characteristics of a pressure regulating poppet valve during opening process [J]. Journal of Vibration and Shock,2020,39(18):181-187.
[9] 袁士豪,殷晨波,刘世豪.基于AMESim的平衡阀动态性能分析[J].农业机械学报,2013,44(08):273-280.
YUAN Shihao,YIN Chenbo,LIU Shihao. Working properties of counterbalance valve based on AMESim code[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(08):273-280.
[10] 汤何胜,訚耀保,杜广杰.带平衡阀的挖掘机行走马达液压制动特性[J].吉林大学学报(工学版),2014,44(03):680-685.
TANG Hesheng,YAN Yaobao,DU Guangjie. Hydraulic braking characteristic of traveling motor for excavator with a balance valve[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(03):680-685.
[11] 张红军,魏永辰,吴耀辉,等.工程机械中负值负载的液压平衡与限速[J].液压气动与密封,2008(03):42-44.
ZHANG Hongjun,WEI Yongchen,WU Yaohui,et al. Hydraulic balancing and limiting speed of over-running load in construction machinery and equipment[J]. Hydraulic Pneumatics & Seal, 2008(03):42-44.
[12] 许益民,刘建军,刘汉桥,等.液压马达制动回路的典型故障及其解决方法[J].液压与气动,2006(04):79-80.
XU Yimin,Liu Jian jun,LIU Hanjiao,et al. The typical failure of hydraulic motor braking circuit and its solution[J]. Chinese Hydraulics & Pneumatics 2006(04):79-80.
[13] 马来好,翁晶,黄喆,等.船舶吊舱回转液压系统联合仿真研究[J].机床与液压,2020,48(04):151-153+164.
MA Laihao,WENG Jin,HUANG Zhe,et al. Co-simulation research of slewing hydraulic system on ship podded propulsion[J]. Machine Tool & Hydraulic, 2020,48(04):151-153+164.
[14] 武哲,张光锋,方敏,等.一种全回转舵桨的液压控制系统及其控制方法[P].中国: 201810995181.4,2020-06-05.
WU Zhe,ZHANG Guangfeng,Fang Min,et al. A kind of hydraulic control system and its control method of azimuth thruster[P].China: 201810995181.4,2020-06-05.
[15] 武哲,卢凯发,方敏,等.一种全回转舵桨装置的液压控制系统及其控制方法[P].中国,201810997333.4,2020-06-05.
WU Zhe, LU Kaifa, Fang Min, et al. A kind of hydraulic control system and its control method of azimuth thruster [P]. China: 201810997333.4,2020-06-05.
[16] 路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1988
LU Yongxiang,HU Dahong. Electro-hydraulic Proportional Control Technology [M]. Beijing:Mechanical Industry Press,2011.
[17] 李壮云.液压元件与系统[M].北京:机械工业出版社,2011.
LI Zhuangyun. Hydraulic Components and System[M]. Beijing: Mechanical Industry Press,2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}