偏心支撑框架空间子结构混合试验边界条件模拟方法

李腾飞1,苏明周1,2,隋龑1,2,弓欢学1,2,马磊1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 229-237.

PDF(3435 KB)
PDF(3435 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 229-237.
论文

偏心支撑框架空间子结构混合试验边界条件模拟方法

  • 李腾飞1,苏明周1,2,隋龑1,2,弓欢学1,2,马磊1,2
作者信息 +

Boundary condition simulation in spatial substructure hybrid tests for eccentrically braced frames

  • LI Tengfei1, SU Mingzhou1,2, SUI Yan1,2, GONG Huanxue1,2, MA Lei1,2
Author information +
文章历史 +

摘要

数值子结构的建模精度和子结构的边界条件模拟是子结构混合试验中的两个关键问题。为进一步研究这种新型结构试验方法对于空间框架结构的适用性,基于高强钢组合Y形偏心支撑框架模型展开研究。首先建立了一套由OpenSees,OpenFresco试验平台以及MTS加载系统组成的混合试验系统。然后分别针对2层、3层和4层3跨高强钢组合Y形偏心支撑框架,取底层带有偏心支撑的框架部分作为试验子结构,其余部分作为数值子结构在OpenSees中进行模拟。在混合试验之前,利用已有单榀试件拟静力试验结果对数值子结构的建模方法进行了数值模拟验证。最后选取El Centro波作为原始输入地震波,针对试验子结构的平动模拟和竖向荷载作用进行了一系列空间子结构混合试验。结果表明:通过数值模拟验证拟静力试验结果的方式,可以为混合试验中数值子结构的建模提供参考依据;采用双作动器水平加载来实现试验子结构的平动,可以有效考虑数值子结构对试验子结构的边界约束;竖向荷载的考虑,可以更真实的模拟试验子结构的重力二阶效应。

Abstract

Modeling accuracy of numerical substructures and boundary condition simulation of substructures are two key problems in substructure hybrid tests (SHTs). Based on high-strength steel Y-eccentrically braced frame (Y-HSS-EBF) model, the applicability of this new structural test method for space frame structures was further studied. First, a SHT system consisting of OpenSees, OpenFresco test platform and MTS loading system was established. Then, for 3-span Y-HSS-EBFs with 2, 3 and 4 stories respectively, the bottom frame with eccentric braces was taken as the experimental substructure and the remainder as the numerical substructure for simulation in OpenSees. Based on the pseudo-static tests of single-span planar specimens, the modeling method of numerical substructure was validated before SHTs. Finally, El Centro wave was selected as the original input seismic wave, and a series of SHTs of space frame were conducted to simulate the horizontal motion and vertical load of the experimental substructure. The results show that, based on the pseudo-static test results, a finite element model was validated to provide a reference for the numerical substructure model of SHTs. The horizontal loading of double actuators was used to realize the translation of the experimental substructure, which can effectively consider the boundary constraints of the numerical substructure on the experimental substructure. The consideration of vertical load could simulate the gravity second-order effect of the experimental substructure more realistically.

关键词

边界条件模拟 / 混合试验 / 偏心支撑框架 / 空间子结构 / OpenSees

Key words

boundary condition simulation / hybrid test / eccentrically braced frame / space substructure / OpenSees

引用本文

导出引用
李腾飞1,苏明周1,2,隋龑1,2,弓欢学1,2,马磊1,2. 偏心支撑框架空间子结构混合试验边界条件模拟方法[J]. 振动与冲击, 2022, 41(1): 229-237
LI Tengfei1, SU Mingzhou1,2, SUI Yan1,2, GONG Huanxue1,2, MA Lei1,2. Boundary condition simulation in spatial substructure hybrid tests for eccentrically braced frames[J]. Journal of Vibration and Shock, 2022, 41(1): 229-237

参考文献

[1] Dermitzakis S N, Mahin S A. Development of substructuring techniques for on-line computer controlled seismic performance testing [R]. Report No.UCB/EERC-85/04, Berkeley, CA, Earthquake Engineering Research Center, 1985.
[2] Chen C, Ricles J M. Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): 549–569.
[3] Zhu F, Wang J, Jin F, et al. Simulation of large-scale numerical substructure in real-time dynamic hybrid testing [J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4): 599–609.
[4] 李腾飞, 隋龑, 苏明周, 等. 偏心支撑框架子结构实时混合仿真试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(11): 51–58.
 LI Tengfei, SUI yan, SU mingzhou, et al. Study on Real Time Hybrid Simulation Test of an Eccentrically Braced Frame as Test Substructure [J]. Journal of Hunan University (Natural Science Edition), 2018, 45(11): 51–58.
[5] 李宁, 周子豪, 李忠献. 基于时滞追踪的实时混合试验自适应补偿方法[J]. 工程力学, 2019, 36(07): 38–47.
 LI Ning, ZHOU Zihao, LI Zhongxian. Time-delay tracing based adaptive compensation algorithm for real-time hybrid testing [J]. Engineering Mechanics, 2019, 36(07): 38–47.
[6] Spencer Jr B F, Elnashai A, Kuchma D, et al. Multi-site soil-structure-foundation interaction test (MISST) [M]. University of Illinois at Urbana-Champaign, 2006.
[7] Stojadinovic B, Mosqueda G, Mahin S A. Event-driven control system for geographically distributed hybrid simulation [J]. Journal of Structural Engineering, 2006, 132(1): 68–77.
[8] 郭玉荣, 范云蕾, 曾东, 等. 网络化结构实验室:桥梁结构远程拟动力试验平台开发与应用[J]. 工程力学, 2010, 27(S1): 94–98.
 GUO Yurong, FAN Yunlei, ZENG Dong, et al. Networked structural laboratories: development and application of remote pseudo-dynamic testing platforms for bridge structures [J]. Engineering Mechanics, 2010, 27(S1): 94–98.
[9] 张钰, 潘鹏. 考虑子结构间相互作用的结构地震反应并行计算方法研究[J]. 工程力学, 2013, 30(05): 118–124.
 ZHANG Yu, PAN Peng. Parallel computing method for structural seismic response analysis considering interaction between substructures [J]. Engineering Mechanics, 2013, 30(05): 118–124. 
[10] 杨格, 王贞, 吴斌,等. 建筑结构混合试验平台HyTest开发研究[J]. 建筑结构学报, 2015, 36(11): 149–156.
 YANG Ge, WANG Zhen, WU Bin, et al. Development of HyTest for structural hybrid simulation [J]. Journal of Building Structures, 2015, 36(11): 149–156.
[11] Wu B, Chen Y, Xu G, et al. Hybrid simulation of steel frame structures with sectional model updating [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(8):1251–1269.
[12] Mohagheghian K, Karami Mohammadi R. Comparison of online model updating methods in pseudo-dynamic hybrid simulations of TADAS frames [J]. Bulletin of Earthquake Engineering, 2017, 15(10), 4453–4474.
[13] 王涛, Mosqueda G, Jacobsen A, 等. 用分布式混合试验系统模拟结构的倒塌行为[J]. 防灾减灾工程学报, 2010, 30(s1): 65–69.
[14] Fermandois G A, Spencer B F. Model-based framework for multi-axial real-time hybrid simulation testing [J]. Earthquake Engineering and Engineering Vibration, 2017, 16(4): 671–691.
[15] 王贞, 朱思宇, 许国山, 等. 双向混合试验方法及验证[J]. 振动与冲击, 2019, 38(9): 1–8.
 WANG Zhen, ZHU Siyu, XU Guoshan, et al. Bi-directional hybrid test method and its verification [J]. Journal of Vibration and Shock, 2019, 38(9): 1–8.
[16] 杨澄宇, 蔡雪松, 袁勇. 地铁车站钢筋混凝土中柱试件抗震混合试验研究[J]. 振动与冲击, 2020, 39(15): 126–132.
YANG Chengyu, CAI Xuesong, YUAN Yong. Hybrid simulation for aseismic performance of subway station with its RC central column as test specimen [J]. Journal of Vibration and Shock, 2020, 39(15): 126–132.
[17] 段留省, 苏明周, 焦培培, 等. 高强钢组合Y形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2014, 35(12): 89–96.
 DUAN Liusheng, SU Mingzhou, JIAO Peipei, et al. Experimental study on seismic behavior of high strength steel composite Y-type eccentrically braced frames [J]. Journal of Building Structures, 2014, 35(12): 89–96.
[18] Mazzoni S, McKenna F, Scott MH, et al. Open system for earthquake engineering simulation user command-language manual—OpenSees version 2.0 [M]. Pacific Earthquake Engineering Research Center (PEER), Univ. of California, Berkeley, CA, USA, 2009.
[19] Özhendekci D, Özhendekci N. Effects of the frame geometry on the weight and inelastic behaviour of eccentrically braced chevron steel frames [J]. Journal of Constructional  Steel Research 2008, 64(3): 326–343.
[20] Schellenberg A, Kim H K, Takahashi Y, et al. OpenFresco Command Language Manual [M]. The Regents of the University of California, 2009.

PDF(3435 KB)

Accesses

Citation

Detail

段落导航
相关文章

/