针对高强钢结构在抗震设计中存在的结构延性差、刚度小的问题,提出了高强钢框架-屈曲约束支撑结构。为研究此类结构的抗震性能,对2个足尺单榀单跨单层试件进行了拟静力加载试验,观测了结构在水平往复荷载下变形特征与破坏模式,分析了结构及构件滞回曲线特征,探讨了试件强度退化、刚度退化、塑性变形、耗能能力以及钢框架和屈曲约束支撑的承载力分配和耗能分配。结果表明:高强钢框架-屈曲约束支撑结构滞回性能稳定,塑性变形及耗能能力强,最大水平层间位移角达3%,最大等效阻尼比达30.4%~36.3%。试件破坏模式为整体延性破坏,最终失效模式为柱底翼缘严重局部屈曲以及柱底焊缝撕裂。水平荷载由钢框架与屈曲约束支撑共同承担。当水平位移角在1.5%以内时,塑性变形集中于屈曲约束支撑,钢框架塑性变形仅占总变形的3%~5%,塑性损伤较小,可通过性能化设计方法将结构的塑性变形限制与屈曲约束支撑,可实现震后快速修复。当层间位移角在1.5%以内时,屈曲约束支撑耗能占结构总耗能的95%以上。采用ANSYS建立了相应的有限元模型,有限元分析结果与试验结果吻合较好,验证了有限元模型的有效性。
Abstract
High-strength steel frame with buckling restrained brace was proposed for the defects of high-strength steel in seismic application including poor ductility and low stiffness. Two full-scale single-span single-layer specimens were tested under quasi-static loading to investigate the seismic behavior of this structure. The deformation characteristics and failure mode of the structure under horizontal cyclic load were observed. The deformation characteristics and failure mode of the structure under horizontal loading were observed. The hysteretic curves of the structure and the components were analyzed and the load degradation, stiffness degradation, plastic deformation, energy dissipation capacity, horizontal force distribution and energy dissipation distribution were discussed. The results indicated that the hysteretic curves of the specimens were plentiful and stable. The plastic deformation capacity and energy dissipation capacity of the specimens were excellent with the maximum inter-story drift ratio to be 3% and equivalent damping ratio to be 30.4% ~ 36.3%. The horizontal loads were resisted by the steel frame and the buckling restrained brace together, while almost all the energy was dissipated by the buckling restrained brace. The failure mode of the specimen was buckling of the column flanges and fracture of the weld at the bottom of the column. The plastic deformation of steel frame was rather small, which was beneficial to repair after earthquake. Finite element model (FEM) was established by ANSYS. The results by FEM were in good agreement with the test results, which verified the effectiveness of the FEM.
关键词
高强钢 /
屈曲约束支撑 /
拟静力试验 /
有限元分析 /
抗震性能
{{custom_keyword}} /
Key words
High strength steel /
Buckling restraind brace /
Pseudo-static test /
Finite element analysis /
seismic behavior
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BAN H Y, SHI G, SHI Y J, et al. Research Progress on the Mechanical Property of High Strength Structural Steels[J]. Advanced Materials Research, 2011,250-253: 640-648.
[2] 邱林波, 刘毅, 侯兆新, 等. 高强结构钢在建筑中的应用研究现状[J]. 工业建筑, 2014,44(3): 1-5.
QIU Lin-bo, LIU Yi, Hou Zhao-xin, et al. State application research of high strength steel in steel structures[J]. Industrial construction, 2014,44(3): 1-5.
[3] 聂建国. 我国结构工程的未来——高性能结构工程[J]. 土木工程学报, 2016(09): 1-8.
Nie Jian-guo, The future of structural engineering in China high-performance structural engineering[J]. China civil engineering journal, 2016(09): 1-8.
[4] 冯鹏, 叶列平, 陆新征. 高强高性能工程结构材料与现代工程结构及其设计理论的发展: 第一届结构工程新进展国际论坛[C], 北京, 2006.
FENG Peng, YE Lie-ping, LU Xin-zheng. High strength/ performance structural materials and the developments of mordern engineering structures and the design theory: 1st International forum on advance in structural engineering.
[5] COLLIN P, JOHANSSON B. Bridges in high strength steel: IABSE Symposium Report[C], Zurich, Switzerland: IABSE, 2006.
[6] 施刚, 石永久, 班慧勇. 高强度钢材钢结构[M]. 北京: 中国建筑工业出版社, 2014.
SHI Gang, SHI Yong-jiu, BAN Hui-Yong. High strength steel structures[M]. Bei jing: China Architecture& Building Press, 2014.
[7] 田小红, 苏明周, 李慎, 等. 高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 振动与冲击, 2020,39(12):95-102.
TIAN Xiao-hong, SU Ming-zhou, LI Sheng, et al. Comparative analysis on seismic performance of high strength steel composite K-shaped eccentrically braced frames[J]. Journal of vibration, 2020,39(12):95-102.
[8] 连鸣, 苏明周, 郭艳. Y形高强钢组合偏心支撑框架结构抗震性能简化分析方法研究[J]. 振动与冲击, 2017,36(09):214-224+266.
LIAN Ming, SU Ming-zhou, GUO Yan. A simplified analysis method for a seismic behaviors of Y-type high strength steel composite eccentrically braced frames[J]. Journal of vibration, 2017,36(09):214-224+266.
[9] SHI G, HU F, SHI Y. Recent research advances of high strength steel structures and codification of design specification in China[J]. International Journal of Steel Structures, 2014,14(4): 873-887.
[10] GB 50011-2010(2016年版) 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.
GB 50011-2010 (2016 Edition) Code for seismic design of buildings [S]. Beijing: China Architecture& Building Press:, 2016
[11] TENCHINI A, D'ANIELLO M, REBELO C, et al. Seismic performance of dual-steel moment resisting frames[J]. Journal of Constructional Steel Research, 2014,101: 437-454.
[12] Van LONG H, JEAN-FRANÇOIS D, LAM L D P, et al. Field of application of high strength steel circular tubes for steel and composite columns from an economic point of view[J]. Journal of Constructional Steel Research, 2011,67(6): 1001-1021.
[13] NAKAI M, NAKAMURA Y, MAEDA S, et al. Proposal for damage-free design method of steel structure utilizing high strength steel under great earthquake[J]. Journal of Structural & Construction Engineering, 2011,76(666): 1443-1451.
[14] TENCHINI A, D'ANIELLO M, REBELO C, et al. High strength steel in chevron concentrically braced frames designed according to Eurocode 8[J]. Engineering Structures, 2016,124: 167-185.
[15] GB50017-2017 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.
GB 50017-2017 steel structure design standard [S]. Beijing: China Architecture& Building Press, 2017
[16] GB/T228.1-2010 金属材料 拉伸试验 第1部分:室温试验方法[S]. 北京: 中国标准出版社, 2010.
GB/T 228.1-2010 metallic materials tensile testing Part 1: room temperature test method [S]. Beijing: Standards Press of China, 2010
[17] ANSI /AISC 341-10 Seismic provisions for structural steel building[S]. Chicago, illinois: 2010.
[18] WU A C, LIN P C, TSAI K C. High-mode buckling responses of budding-restrained brace core plates[J]. Earthquake Engineering & Structural Dynamics, 2014,43(3): 375-393.
[19] SHI G, ZHU X, BAN H. Material properties and partial factors for resistance of high-strength steels in China[J]. Journal of Constructional Steel Research, 2016,121: 65-79.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}