质量偏心Timoshenko梁的振动波特性研究

王剑1,2,袁秀峰2,胡永彪1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 265-270.

PDF(3044 KB)
PDF(3044 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 265-270.
论文

质量偏心Timoshenko梁的振动波特性研究

  • 王剑1,2,袁秀峰2,胡永彪1
作者信息 +

Vibration wave characteristics of Timoshenko beam with eccentric mass

  • WANG Jian1,2, YUAN Xiufeng2, HU Yongbiao1
Author information +
文章历史 +

摘要

在研究船舶、潜艇等工程结构的低频振动时,通常可以将其简化为质量在截面内分布非均匀的梁结构,此质量偏心会引起弯-纵耦合。本文针对弯-纵耦合的质量偏心Timoshenko梁,推导了其截止频率的解析表达式;探讨了质量偏心对其纵振波、传播弯曲波及衰减弯曲波波数的影响规律;研究了三组波数下纵向/弯曲位移比随频率及质量偏心的变化。分析结果表明,质量偏心会降低梁的截止频率,偏心率越大,降低越明显;弯曲衰减波会在截止频率处转变为弯曲传播波;质量偏心使得非频散的纵向振动波转变为频散波;纵向振动与弯曲振动的耦合在质量偏心率或频率增大时,会进一步加强。

Abstract

The main bodies can usually be simplified as beams in the study of low-frequency vibrations of ships, submarines, and other engineering structures. While the couplings between bending and longitudinal vibrations will arise because of the non-uniform mass distribution in the cross-section. Analytical expression of cut-off frequency for the bending-longitudinal coupled eccentric Timoshenko beam was derived. Influences of eccentricity on the longitudinal waves, propagating bending waves, and decaying bending waves were discussed. Variations of longitudinal/bending displacement ratio with frequency and eccentricity under three sets of wavenumbers were studied. Analysis results show that eccentricity reduces the cut-off frequency of beam. The greater the eccentricity, the more obvious the reduction. The decaying bending wave transforms into propagating one at the cut-off frequency. Eccentricity induces the transition of longitudinal wave from non-dispersive one to dispersive one. If the eccentricity or frequency increases, or both, the bending-longitudinal coupling will be further strengthened.

关键词

振动波 / 质量偏心 / Timoshenko梁 / 弯-纵耦合

Key words

vibration waves / mass eccentricity / Timoshenko beam / bending-longitudinal coupling

引用本文

导出引用
王剑1,2,袁秀峰2,胡永彪1. 质量偏心Timoshenko梁的振动波特性研究[J]. 振动与冲击, 2022, 41(1): 265-270
WANG Jian1,2, YUAN Xiufeng2, HU Yongbiao1. Vibration wave characteristics of Timoshenko beam with eccentric mass[J]. Journal of Vibration and Shock, 2022, 41(1): 265-270

参考文献

[1] Daidola J C. Natural vibrations of beams in a fluid with applications to ships and other marine structures[J]. Transactions-Society of Naval Architects and Marine Engineers, 1984, 92: 331-351.
[2] Kumar A, Das S L, Wahi P. Effect of radial loads on the natural frequencies of thin-walled circular cylindrical shells. International Journal of Mechanical Sciences, 2017, 122: 37-52.
[3] Senjanovic I, Vladimir N, Tomic M, et al. Global hydroelastic analysis of ultra large container ships by improved beam structural model[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(4): 1041-1063.
[4] Senjanović I, Ančić I, Magazinović G, Alujević N, Vladimir N, Cho D S. Validation of analytical methods for the estimation of the torsional vibrations of ship power transmission systems. Ocean Engineering, 2019, 184: 107-120.
[5] 谢基榕, 徐利刚, 沈顺根, 等. 推进器激励船舶振动辐射声计算方法[J]. 船舶力学, 2011, 15(5): 563-569.
    Xie Jirong, Xu Ligang, Shen Shungen. Calculational method for radiating sound excited by vibration of ship propeller[J]. Journal of ship mechanics, 2011, 15(5): 563-569.
[6] 王剑, 张振果, 华宏星. 考虑质量偏心 Timoshenko 梁的弯-纵耦合固有振动特性研究[J]. 振动与冲击, 2015, 34(19): 8-12.
 Wang Jian, Zhang Zhenguo, Hua Hongxing. Coupled flexural and longitudinal natural vibration characteristics of Timoshenko beam consider eccentricity[J]. Journal of Vibration and Shock, 2015, 34(19): 8-12.
[7] Fahy F J. Sound and Structural Vibration: Radiation, Transmission and Response[M]. Amsterdam: Elsevier, 2012.63-70.
[8]  El Masri E, Ferguson N, Waters T. Wave propagation and scattering in reinforced concrete beams[J]. Journal of the Acoustical Society of America, 2019, 146(5): 3283-3294.
[9] 林耀雄. 渐变截面梁波透射反射系数求解的数值验证[J]. 振动与冲击, 2011, 30(03): 274-280.
 Lin Yaoxiong. Numerical verification for calculation of transmission and reflection matrix of beam with gradually varying cross-section[J]. Journal of Vibration and Shock, 2011, 30(03): 274-280.
[10] Xiuchang H , Hongxing H , Yu W , et al. Research on Wave Mode Conversion of Curved Beam Structures by the Wave Approach[J]. Journal of Vibration & Acoustics, 2013, 135(3): 31-41.
[11] Chouvion B. Vibration analysis of beam structures with localized nonlinearities by a wave approach. Journal of Sound and Vibration, 2019, 439: 344-361.
[12] 胡婉璐, 陈海波, 钟强. 轴力对梁结构耦合损耗因子的影响研究[J]. 振动与冲击, 2020, 39(17): 24-30.
 Hu Wanlu, Chen Haibo, Zhong Qiang. Effects of axial force on coupling loss factor of beam structures[J]. Journal of Vibration and Shock, 2020, 39(17): 24-30.
[13] Mei C. Analysis of in- and out-of plane vibrations in a rectangular frame based on two- and three-dimensional structural models[J]. Journal of Sound and Vibration, 2019, 440: 412-438.
[14] Kalkowski M K, Muggleton J M, Rustighi E. An experimental approach for the determination of axial and flexural wavenumbers in circular exponentially tapered bars. Journal of Sound and Vibration, 2017, 390: 67-85.
[15] 杨佳洁,周海龙.基于卡尔丹公式的三层平面刚架自振频率求解[J].科技创新与应用,2019(32):5-7.
 Yang Jiajie, Zhou Hailong. Solution of the natural frequency of three-story rigid frame based on Kaldan formula[J]. Journal of Technological Innovation and Application, 2019(32):5-7.
[16] 《数学手册》编写组编. 数学手册[M]. 北京: 高等教育出版社, 1979.88-89.
 "Mathematics Handbook" compilation group. Mathematics Handbook[M]. Beijing: Higher Education Press, 1979.88-89.
[17] Graff K F. Wave motion in elastic solids[M]. Massachusetts: Courier Corporation, 2012.78-81.
[18] Cowper G R. The shear coefficient in Timoshenko’s beam theory[J]. Journal of applied mechanics, 1966, 33(2): 335-340.
[19] Rao S S. Vibration of Continuous Systems[M]. New Jersey: John Wiley & Sons, 2019.357-358.

PDF(3044 KB)

Accesses

Citation

Detail

段落导航
相关文章

/