基于橡胶热氧老化规律的压缩机隔振脚垫动态特性研究

李显1,陈俊杰1,2,邱光琦1,杨超峰3,胡俊峰1,陈建军2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 271-278.

PDF(1889 KB)
PDF(1889 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (1) : 271-278.
论文

基于橡胶热氧老化规律的压缩机隔振脚垫动态特性研究

  • 李显1,陈俊杰1,2,邱光琦1,杨超峰3,胡俊峰1,陈建军2
作者信息 +

Dynamic characteristics of compressor vibration isolation pad based on rubber thermal oxygen aging law

  • LI Xian1, CHEN Junjie1,2, QIU Guangqi1, YANG Chaofeng3, HU Junfeng1, CHEN Jianjun2
Author information +
文章历史 +

摘要

以某空调器压缩机橡胶隔振脚垫为研究对象,考虑热氧老化对橡胶隔振脚垫的动态特性影响,采用Arrhenius模型、分数导数Kelvin-Voigt模型和库仑摩擦模型对橡胶隔振脚垫进行动态特性建模,建立了橡胶隔振脚垫热氧老化-动态特性数学模型。基于MTS831弹性体试验台搭建了隔振脚垫静、动态特性测试装置,给出了模型参数的辨识方法,实验验证了热氧老化-动态特性数学模型的正确性。结果表明,在100℃热氧老化7天后,橡胶隔振脚垫静刚度增长19.35%,动刚度最大增长5.3%,损耗因子最大减小11.6%。热氧老化-动态特性模型能够有效地表征橡胶隔振脚垫动态特性的振幅相关性、频率相关性和热氧老化相关性,为深入研究计及外界环境温度因素导致橡胶热氧老化的隔振脚垫服役后动态特性演化规律提供基础。

Abstract

Taking a rubber isolation pad of air conditioning compressor as the research object and considering the effect of thermal oxygen aging on its dynamic characteristics, a mathematical model of thermal oxygen aging-dynamic characteristics of rubber isolation pad is established by adopting the Arrhenius model, the fractional derivative Kelvin-Voigt model and smooth Coulomb friction model. Based on the MTS831 elastomer test bench, a test rig for static and dynamic characteristics of rubber isolation pads is built, and a method for identifying model parameters is proposed. The experimental results verify the correctness of the mathematical model of thermal oxygen aging-dynamic characteristics. It is shown that the static stiffness of rubber isolation pads increases by 19.35%, the maximum dynamic stiffness increases by 5.3% and the maximum loss factor decreases by 11.6% after thermal oxygen aging 7 days. Moreover, the thermal oxygen aging-dynamic characteristics model can effectively characterize the amplitude-dependent, frequency-dependent and thermal oxygen aging-dependent performances of rubber isolation pads. This paper can provide a basis for further research on evolution law of dynamic characteristics of rubber isolation pads after its service with thermal oxygen aging caused by ambient temperature.

关键词

压缩机 / 隔振脚垫 / 热氧老化 / 动态特性 / 橡胶

Key words

 Compressor / Isolation pad / Thermal oxygen ageing / Dynamic characteristics / Rubber

引用本文

导出引用
李显1,陈俊杰1,2,邱光琦1,杨超峰3,胡俊峰1,陈建军2. 基于橡胶热氧老化规律的压缩机隔振脚垫动态特性研究[J]. 振动与冲击, 2022, 41(1): 271-278
LI Xian1, CHEN Junjie1,2, QIU Guangqi1, YANG Chaofeng3, HU Junfeng1, CHEN Jianjun2. Dynamic characteristics of compressor vibration isolation pad based on rubber thermal oxygen aging law[J]. Journal of Vibration and Shock, 2022, 41(1): 271-278

参考文献

[1] 李世尧,张卫国,侯军占,等. 减振器动刚度特性研究[J]. 兵工学报,2017,38(11): 2274-2279.
LI Shiyao, ZHANG Weiguo, HOU Junzhan, et al. Research on Dynamic Stiffness of Vibration Isolator[J]. Acta Armamentarii, 2017, 38(11): 2274-2279.
[2] Esmizadeh E, Naderi G, Barmar M. Effect of organo-clay on properties and mechanical behavior of Fluorosilicone rubber[J]. Fibers & Polymers, 2014, 15(11): 2376-2385.
[3] Subhani P M, Kumar R K. A New Stored Energy Function for Rubber Like Materials for Low Strains[J]. Mechanics of Advanced Materials and Structures, 2009, 16(5): 402-416.
[4] Kamiński M, Lauke B. Probabilistic and stochastic aspects of rubber hyperelasticity[J]. Meccanica, 2018, 53(9). 2363-2378.
[5] Kim B, Lee S B, Lee J, et al. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(5): 759-764.
[6] Kaya N, Erkek M Y, Guven C, et al. Hyperelastic modelling and shape optimisation of vehicle rubber bushings[J]. International Journal of Vehicle Design, 2016, 71(1/2/3/4): 212-225.
[7] 何小静,上官文斌. 橡胶隔振器静态力-位移关系计算方法的研究[J]. 振动与冲击,2012,31(11): 91-97.
HE Xiaojing, SHANGGUAN Wenbin. Calculating methods for force versus displacement relation of a rubber isolator[J]. Journal of Vibration and Shock, 2012, 31(11): 91-97.
[8] Loh S K, Faris W F, Hamdi M, et al. Vibrational characteristics of piping system in air conditioning outdoor unit[J]. Science China Technological Sciences, 2011, 54(5): 1154-1168.
[9] 张大伟,翟婉明,朱胜阳,等. 基于橡胶弹簧非线性模型的重载车辆轮轨动力特征分析[J]. 铁道学报,2016,38(12): 19-27.
ZHANG Dawei, ZHAI Wanming, ZHU Shenyang, et al. Wheel-rail Dynamic Interaction between Heavy-haul Freight Car and Ballasted Track Based on A Nonlinear Rubber Spring Model[J]. Journal of The China Railway Society, 2016, 38(12): 19-27.
[10] Luo W B, Yin B Y, Hu X L, et al. Modeling of the heat build-up of carbon black filled rubber[J]. Polymer Testing, 2018, 69(1): 116-124.
[11] 吴杰,上官文斌,潘孝勇. 采用超弹性-粘弹性-弹塑性本构模型的橡胶隔振器动态特性计算方法[J]. 机械工程学报,2010,46(14): 109-114.
WU Jie, SHANGGUAN Wenbin, PAN Xiaoyong. Computational Method for Dynamic Properties of Rubber Isolators Using Hyperelastic-viscoelastic-plastoelastic Constitutive Model[J]. Chinese Journal of Mechanical Engineering, 2010, 46(14): 109-114.
[12] 陈俊杰,殷智宏,郭孔辉,等. 节流孔式空气阻尼系统建模及参数影响分析[J]. 振动与冲击,2018,37(16): 241-248.
CHEN Junjie, YIN Zhihong, GUO Konghui, et al. Modelling and effect analysis of design parameters for orifice-type air damping systems[J]. Journal of Vibration and Shock, 2018, 37(16): 241-248.
[13] Chen J J, Yin Z H, Rakheja S, et al. Theoretical modelling and experimental analysis of the vertical stiffness of a convoluted air spring including the effect of the stiffness of the bellows[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(4): 547-561.
[14] 孙伟,李以农,刘万里,等. 橡胶隔振器非线性动态特性建模及实验研究[J]. 振动与冲击,2012,31(23): 78-83.
SUN Wei, LI Yinong, LIU Wanli, et al. Dynamic modeling and test for a nonlinear rubber damper[J]. Journal of Vibration and Shock, 2012, 31(23), 78-83.
[15] Azura A R, Leow S L. Effect of carbon black loading on mechanical, conductivity and ageing properties of Natural Rubber composites[J]. Materials Today: Proceedings, 2019, 17(1): 1056-1063.
[16] Rodas C O, Zaieri F, Naiet-Abdelaziz M. A finite strain thermo-viscoelastic constitutive model to describe the self-heating in elastomeric materials during low-cycle fatigue[J]. Journal of the Mechanics and Physics of Solids, 2014, 64(1): 396-410.
[17] Zheng W, Zhao X Y, Li Q G, et al. Compressive stress relaxation modeling of butadiene rubber under thermo‐oxidative aging[J]. Journal of Applied Polymer Science, 2017, 134(12): 1-8.
[18] Moon B, Jun N, Park S, et al. A study on the modified Arrhenius equation using the oxygen permeation block model of crosslink structure[J]. Polymers, 2019, 11(1): 1-15.
[19] 智杰颖. 橡胶黏弹性滞后生热及热氧老化的实验及多尺度模拟[D]. 济南: 山东大学,2019.
ZHI Jieying. Experiment and Multi-scale Simulation of Rubber Viscoelastic Hysteresis Heat Generation and Thermo-oxidative Aging[D]. Jinan: Shandong University, 2019.
[20] ISO 188-2011. Rubber, vulcanized or thermoplastic- Accelerated aging and heat resistance tests[S]. Switzerland. International Standard Organization, 2011.
[21] JIS K6386-1999. Rubber materials for vibration isolators[S]. Japan. Japanese Industrial Standards Committee, 1999.
[22] ISO 7619-1: 2010. Rubber, vulcanized or thermoplastic- Determination of indentation hardness-Part 1: Durometer method(Shore hardness)[S]. Switzerland. International Standard Organization, 2010.
[23] Liu Q B, Shi W K, Chen Z Y. Natural environment degradation prediction of rubber and MPSO-based aging acceleration factor identification through the dispersion coefficient minimisation method[J]. Polymer Testing, 2019, 77(1): 1-6.
[24] Berg M. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle System Dynamics, 1998, 30(3/4): 197-212.
[25] Liu X, Zhao J, Yang R, et al. Effect of lubricating oil on thermal aging of nitrile rubber[J]. Polymer Degradation and Stability, 2018, 151(1): 136-143.
[26] 刘荣,马玉宏,赵桂峰,等. 老化-海蚀循环作用下高阻尼橡胶隔震支座橡胶材料性能劣化规律[J]. 材料导报,2020,34(4): 4166-4173.
LIU Rong, MA Yuhong, ZHAO Guifeng, et al. Trend of Property Deterioration for Rubber Material Used in High Damping Rubber Isolation Bearing Under Aging-Marine Erosion Cycle[J]. Materials Reports, 2020, 34(4): 4166-4173.
[27] 杨晓红,许进升,周长省,等. 三元乙丙橡胶热氧老化后的力学性能[J]. 北京理工大学学报,2017,37(2): 126-130.
YANG Xiaohong, XU Jinsheng, ZHOU Changsheng, et al. Microcosmic Structure and Mechanics Performance of EPDM Rubber in Hot-Oxygen Aging[J]. Transaction of Beijing Institute of Technology, 2017, 37(2): 126-130.
[28] 谢艳霞,郑天辰,石杰,等. 抗氧剂4010NA和RD对过氧化二异丙苯交联EPDM耐热复合材料性能的影响[J]. 高分子材料科学与工程,2019,35(10): 68-76.
XIE Yanxia, ZHENG Tianchen, SHI Jie, et al. Effect of Antioxidant 4010NA and RD on the Properties of EPDM Heat Resistant Composites Crosslinked by Dicumyl Peroxide[J]. Polymeric Materials Science and Engineering, 2019, 35(10): 68-76.
[29] Assink R A, Gillen K T, Sanderson B. Monitoring the degradation of a thermally aged EPDM terpolymer by 1H NMR relaxation measurements of solvent swelled samples[J]. Polymer, 2002, 43(4): 1349-1355.
[30] Chou H W, Huang J S, Lin S T. Effects of thermal aging on fatigue of carbon black-reinforced EPDM rubber[J]. Journal of Applied Polymer Science, 2007, 103(2): 1244-1251.
[31] 吴杰,李轼. 某装载机动力总成悬置系统隔振性能优化[J]. 振动与冲击,2016,35(1): 23-27.
WU Jie, LI Shi. Optimal design for vibration isolation performance of a loader's powertrain mounting system[J]. Journal of Vibration and Shock, 2016, 35(1): 23-27.

PDF(1889 KB)

542

Accesses

0

Citation

Detail

段落导航
相关文章

/