针对空气弹簧实际刚度与理论值相差较大的问题,建立了约束膜式空气弹簧的改进刚度模型。改进模型兼顾弹性膜弧长变化及其变形引起的腔室体积变化,理论与实验刚度的偏差为9.67%,相比传统模型计算精度提高7.63%。基于改进刚度模型的分析结果表明:大腔室体积、小有效面积、大弹性膜圆弧半径的结构设计,高弧长变化率的材料及高充气压强的工作方式有利于实现低刚度隔振特性。本文的研究为大承载、低频/超低频约束膜式空气弹簧的结构优化设计与精密加工提供了有效的理论依据。
Abstract
An improved stiffness model of the constrained diaphragm air spring is established to solve the problem that the actual stiffness of the air spring differs greatly from the theoretical value. The improved model takes into account the variation of the arc length and the chamber volume caused by the deformation of the elastic membrane. The deviation between the theoretical and experimental stiffness is 9.67%, which is 7.63% more accurate than that of the traditional model. The analysis results based on the improved stiffness model show that the air spring with large volume, small effective area, large elastic membrane arc radius, high arc length gradient, and high pressure is beneficial to achieve low stiffness isolation. The research in this paper provides an effective theoretical basis for the structural optimization and precision machining of large bearing, low frequency or ultra-low frequency constrained diaphragm air spring.
关键词
空气弹簧 /
改进刚度模型 /
弧长变化 /
腔室体积变化
{{custom_keyword}} /
Key words
air spring /
improved stiffness model /
arc length gradient /
chamber volume change
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Mo, YL. Vibration isolation of biomedical engineering facilities with periodic materials. [J].Current Trends in Biomedical Engineering & Biosciences. 2018, 13.
[2] 陆振宇. 光学移相干涉仪智能抗振平台关键技术研究[D]. 南京理工大学, 2008.
Lu Zhenyu. Critical technique study of intelligent vibration isolation platform for optical phase-shifting interferometer [D]. Nanjing University of Science and Technology, 2008.
[3] 杨远源. 基于无穷刚度和零刚度复合作用的主动负刚度隔微振技术 [D].哈尔滨工业大学,2017.
Yang Yuan-yuan. Active negative stiffness micro-vibration isolation technology with infinite stiffness and zero stiffness composite [D]. Harbin Institute of Technology, 2017.
[4] Li Ling, Wang Yun, Liao Zhi-bo, et al. High precision online measurement technology in assembly and adjustment of GF-4 camera [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(05):77-85.
[5] Hoffmann J A. Superfluid 4He: On sinφ Josephson weak links and dissipation of third sound [D]. Berkeley: University of California, 2005: 142.
[6] 单玉虎. 并联磁负刚度的新型空气弹簧减振器设计[D].华中科技大学, 2014.
Shan Yu-hu. Design of a novel pneumatic vibration isolator parallel with magnetic negative stiffness [D]. Huazhong University of Science and Technology, 2014.
[7] McCue H K. The motion control system for the large optics diamond turning machine (LODTM) [C]//27th Annual Technical Symposium. International Society for Optics and Photonics, 1983: 68-75.
[8] 吴文江. 正负刚度并联精密主动隔振系统研究[D].华中科技大学, 2014.
Wu Wen-jiang. Study on active precision vibration isolation system based on parallel of positive and negative stiffness springs [D]. Huazhong University of Science and Technology, 2014.
[9] Bai Y, Liu Y, Lu Y, et al. Stability improvement for coil position locking of joule balance [J]. Metrologia, 2017, 54(4):461-467.
[10] Wen R W, Tan J B, Wang L, et al. Analysis and experiment of an air vibration isolation system with auxiliary chambers[C]. 2012 International Conference on Vibration, Structural Engineering and Measurement, 2012, 226: 195-198.
[11] Xia Chao, Tan Jiu-bin. An air flotation vibration isolation method based on compound pendulum inverted pendulum-series for optical instruments. [J]. Journal of Optoelectronics. Laser, 2011(10):121-126.
[12] 郭荣生.空气弹簧悬挂的振动特性和参数计算(上)[J]. 铁道车辆,1992,(05):1-6 +56.
Guo Rongsheng. Vibration characteristics and parameter calculation of air spring isolator suspension [J]. Rolling Stock, 1992, 1 (05):1-6 +56.
[13] 中华人民共和国住房和城乡建设部. 中华人民共和国国家标准.隔振设计规范[M]. 中国计划出版社, 2009.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, National Standard of the People’s Republic of China. Code for design of vibration isolation [M]. China Planning Press, 2009.
[14] 成小霞, 李宝仁, 杨钢, 等. 囊式空气弹簧载荷建模与实验研究[J]. 振动与冲击, 2014, 33(17):80-84.
Cheng Xiaoxia, Li Baoren, Yang Gang, et al. Modeling and tests for a load of a cystiform air spring isolator [J]. Journal of Vibration and Shock, 2014, 33(17):80-84.
[15] 闻荣伟. 基于主动负刚度原理的大型精密仪器系统隔微振技术[D].哈尔滨工业大学,2015.
Wen Rongwei. Micro-Vibration isolation technology for large precision instrument system based on the principle of active negative stiffness [D]. Harbin Institute of Technology, 2015.
[16] 朱德库. 空气弹簧及其控制系统[M]. 山东科学技术出版社, 1989, 56-186.
Zhu Deku. Air spring isolator and its control system[M]. Shandong Science and Technology Association, 1989, 56-186.
[17] 董学锋. 膜片空气弹簧的设计计算[J]. 汽车技术, 1990(3):4-9.
Dong Xuefeng. Design and calculation of diaphragm type air-suspension [J]. Automotive Technology,1990(3): 4-9.
[18] 唐传茵, 张义民, 李允公, 等. 单气室变截面空气弹簧刚度特性及影响因素分析[J]. 机械工程学报, 2014, 50 (024):137-144.
Tang Chuanyin, Zhang Yimin, Li Yungong , et al. Analysis of Stiffness Characteristics and Influencing Factors Based on Single Chamber Cross-section Air spring isolator [J]. Journal of Mechanical Engineering, 2014, 50(024):137-144.
[19] 夏超. 基于多绳锥摆倒摆串联的超低频气浮隔振技术研究[D].哈尔滨工业大学, 2011.
Xia Chao. Ultra-low frequency flotation isolation technology on multi-rope cone and inverted pendulum series [D]. Harbin Institute of Technology, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}