为适应复杂的海洋环境,本文提出BFRP(Basalt Fiber Reinforced Polymer)管钢筋混凝土柱,并采用拟静力试验和有限元软件OPENSEES研究其抗震性能,探讨BFRP管厚度、轴压比、长细比、纵筋直径和屈服强度对BFRP管钢筋混凝土柱破坏机理和抗震性能的影响规律。研究结果表明:试件的滞回环都比较饱满,均发生弯曲破坏;BFRP管厚度的增大使得试件的承载力和耗能性能小幅提高,强度退化放缓;轴压比大的试件承载力高,耗能性能较强,但变形能力差,强度以及刚度退化较快;长细比的增大使得试件的滞回曲线变得更为瘦长,整体刚度、峰值荷载、累积耗能大幅降低,同时极限位移明显增大;增大纵筋直径和提高纵筋屈服强度均可使得试件的滞回曲线愈加饱满,初始刚度、峰值荷载以及累积耗能也得到有效提高。BFRP管混凝土柱相比于钢筋混凝土柱,多项抗震性能指标都比较优异,但是与钢管混凝土柱相比仍存在一定差距。
Abstract
In order to adapt to the complex marine environment, a reinforced concrete-filled Basalt Fiber Reinforced Polymer tube column is presented. The seismic performance is studied with the pseudo static test and finite element software OPENSEES. The effects of BFRP tube thickness, axial compression ratio, slenderness ratio, longitudinal reinforcement diameter and yield strength to the failure mechanism and the seismic response of the reinforced concrete-filled BFRP tube columns are examined. The results show that the hysteretic curves of the specimens are full, and they all show bending failure. The increase in the thickness of BFRP tube slightly increases the lateral strength and energy consumption performance of the specimen, and the strength degradation is alleviated. The specimen with higher axial compression ratio has higher peak load and energy consumption performance, but deformability is poorer, and strength and rigidity degrade quickly. The increase in slenderness ratio makes the hysteretic curve of the specimens more slender, integral stiffness, peak load and cumulative energy consumption reduce greatly, and at the same time ultimate displacement increases obviously. Increasing the diameter and yield strength of the longitudinal bars make the hysteretic curves of the specimens plumper, and the initial stiffness, peak load and cumulative energy consumption are effectively improved. Compared to the reinforced concrete column, the reinforced concrete-filled BFRP tube column has better seismic behavior indexes, but there is still a gap between it and the concrete-filled steel tube column.
关键词
BFRP管 /
钢筋混凝土柱 /
滞回性能;拟静力试验;OPENSEES;
{{custom_keyword}} /
Key words
BFRP tube /
reinforced concrete column /
hysteretic behavior /
quasi-static test /
OPENSEES
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Zou P X W. Long-Term Properties and Transfer Length of Fiber-Reinforced Polymers[J]. Journal of Composites for Construction, ASCE, 2003, 7(1): 10-19.
[2]吴智深, 汪 昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5): 1-14.
WU Zhishen, WANG Xin, SHI Jianzhe. Advancement of Basalt Fiber-Reinforced Polymers(BFRPS) and the novel structures reinforced with BFRPS[J]. Engineering Mechanics, 2020, 37(5): 1-14.
[3]巫文君, 姜绍飞, 林 泉. 具有可恢复性的BFRP约束混合配筋混凝土轴压短柱力学性能研究[J]. 福州大学学报(自然科学版), 2017(2) : 167-172+198.
WU Wenjun, Jiang Shaofei, Lin quan. Study on axial compression behavior of hybrid reinforcement concrete stubs reinforced by BFRPS with resilience[J]. Journal of Fuzhou University (Natural Science Edition), 2017(2) : 167-172+198.
[4]陈 亮. BFRP管-再生混凝土-钢管组合短柱轴心受压性能试验研究[D]. 广东工业大学, 2016.
CHEN Liang. Axial compression test of BFRP-recycled concrete-steel double-skin tubular columns[D]. Guangdong University of Technology, 2016.
[5]肖培杰. BFRP-再生混凝土-钢管组合柱拟静力试验研究[D]. 广东工业大学, 2017.
XIAO Peijie. Quasi-static test of BFRP-recycled concrete-steel
tube composite columns. Guangdong University of Technology, 2017.
[6]王海良, 郭 富, 王 博. BFRP管膨胀混凝土短柱轴压力学性能试验研究[J]. 建筑结构, 2016, 046(15): 32-36.
WANG Hailiang, GUO Fu, WANG Bo. Experimental research on the axial compression mechanical performance of BFRP tube expansion concrete short columns[J]. Building Structure, 2016, 046(15): 32-36.
[7]李信峰. BFRP管钢筋混凝土柱偏压力学性能研究[D].华侨大学, 2020.
LI Xinfen. Mechanical Behavior of Reinforced Concrete-Filled BFRP Tubes Columns under Eccentric Load[D]. Huaqiao University, 2020.
[8]张景杭, 吴兆旗, 姜绍飞, 等. BFRP模壳不排水加固混凝土墩柱轴压性能试验研究[J]. 湖南大学学报(自然科学版), 2020, 47(11): 95-105.
ZHANG Jinghang, WU Zhaoqi, JIANG Shaofei, et al. Experimental Study on Axial Compression Behavior of Concrete Pier Column Strengthened with Basalt FRP Mould Shell without Drainage[J]. Journal of Hunan University (Natural Sciences), 2020, 47(11): 95-105.
[9]葛尹. BFRP增强橡胶混凝土梁抗冲击试验研究[J]. 新型建筑材料, 2020, 47(11): 112-117.
GE Yin. Experimental study on impact resistance of BFRP reinforced rubber concrete beams[J]. New Building Materials, 2020, 47(11): 112-117.
[10]Ding L N, Liu X, Wang X, et al. Mechanical properties of pultruded basalt fiber-reinforced polymer tube under axial tension and compression[J]. Construction & Building Materials, 2018, 176(JUL.10): 629-637.
[11]Lv Y, Wu X Q, Zhu Y H, et al. Compression Behavior of Basalt Fiber-Reinforced Polymer Tube-Confined Coconut Fiber-Reinforced Concrete[J]. Advances in Materials Science and Engineering, 2018(3): 1-10.
[12]Xia Y Y, Xian G J, Wang Z Y, et al. Static and Cyclic Compressive Properties of Self-Compacting Concrete-Filled Flax Fiber–Reinforced Polymer Tubes[J]. Journal of Composites for Construction, 2016, 20(6): 04016046.
[13]Ma G, Xiaohuang Chen X H, Yan L B, et al. Monotonic and Cyclic Axial Compressive Properties and Modeling of Basalt FRP-Retrofitted Predamaged Short Columns[J]. Journal of Composites for Construction, 2020, 24(4): 04020023.
[14]建筑抗震试验规程: JGJ/T101—2015 [S]. 北京: 中国建筑工业出版社, 2015.
[15]颜 军, 李泽良, 左 工, 等.焊接封闭箍筋混凝土柱抗震性态指标试验研究[J]. 振动与冲击, 2018, 37(24): 148-157+171.
YAN Jun, LI Zeliang, ZUO Gong, et al. An experimental study on the seismic performance of welded closed stirrup concrete columns[J]. Journal of Vibration and Shock, 2018, 37(24): 148-157+171.
[16]李威威, 潘一君, 王曙光, 等. 考虑灌浆缺陷的装配式混凝土框架结构抗震性能试验研究[J/OL]. 建筑结构学报: 1-9[2021-02-25]. https://doi.org/10.14006/j.jzjgxb.2020.0384.
LI Weiwei, PAN Yijun, WANG Shuguang, et al. Experimental study on seismic performance of the precast concrete frame with grouted defects[J/OL]. Journal of Building Structures: 1-9[2021-02-25]. https://doi.org/10.14006/j.jzjgxb.2020.0384.
[17]Lam L, Teng J G. Design-oriented stress–strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17(6-7): 471-489.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}