压电柔顺x-y微夹持器的设计与分析

宋帅官1,杨依领1,吴高华1,张申廷1,魏燕定2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 154-161.

PDF(2130 KB)
PDF(2130 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 154-161.
论文

压电柔顺x-y微夹持器的设计与分析

  • 宋帅官1,杨依领1,吴高华1,张申廷1,魏燕定2
作者信息 +

Design and analysis of a piezoelectric compliant x-y microgripper

  • SONG Shuaiguan1,YANG Yiling1,WU Gaohua1,ZHANG Shenting1,WEI Yanding2
Author information +
文章历史 +

摘要

针对微操作和微装配领域对微夹持器高位移放大比、多自由度和平动夹持的性能需求,采用双叶型桥式机构和平行四边形机构,设计了一种压电柔顺x-y微夹持器。利用有限元方法建立了微夹持器的静力学与动力学模型,并通过ANSYS Workbench软件分析微夹持器的位移放大比、固有频率和输出耦合比。最后搭建实验测试系统验证微夹持器的开环性能。实验结果表明:微夹持器x、y向的位移放大比分别为30.8和8.6,一阶固有频率为123.3 Hz。当施加10 μm输入位移时,微夹持器x、y向的工作行程为0 ~ 616.6 μm和0 ~ 51.0 μm,夹持力范围为0 ~ 25.8 mN。微夹持器x、y向位移放大比与一阶固有频率的实验测试和仿真数值之间的相对误差分别为17.9%、19.8%、13.9%,实验结果验证了理论模型和仿真分析的可行性。

Abstract

Aiming at the performance requirements of microgrippers with high displacement amplification ratio, multiple degrees of freedom and translational clamping in the fields of micro-operation and micro-assembly, a double-leaf bridge mechanism and parallelogram mechanism are used to design a piezoelectric compliant x-y microgripper. The statics and dynamics models of the microgripper are established through the finite-element method, and the displacement amplification ratio, the natural frequency, and the output coupling ratio of the microgripper are analyzed by ANSYS Workbench software. Finally, an experimental test system is built to verify the open-loop performances of the microgripper. Experimental results show that displacement amplification ratios of the microgripper in x- and y-directions are 30.8 and 8.6, and the first resonant frequency is 123.3 Hz. If an input displacement of 10 μm is applied, the operating ranges in x- and y-directions are 0 ~ 616.6 μm and 0 ~ 51.0 μm, and the gripping force range is 0 ~ 25.8 mN. The relative errors of the x- and y-direction displacement amplification ratio and the first resonant frequency between experimental tests and simulation values are 17.9%, 19.8%, and 13.9%, respectively. Experimental results verify the feasibility of the theoretical model and simulation analysis.

关键词

微夹持器 / 柔顺机构 / 压电驱动 / 多自由度

Key words

microgripper / compliant mechanism / piezoelectric actuation / multiple degrees of freedom

引用本文

导出引用
宋帅官1,杨依领1,吴高华1,张申廷1,魏燕定2. 压电柔顺x-y微夹持器的设计与分析[J]. 振动与冲击, 2022, 41(10): 154-161
SONG Shuaiguan1,YANG Yiling1,WU Gaohua1,ZHANG Shenting1,WEI Yanding2. Design and analysis of a piezoelectric compliant x-y microgripper[J]. Journal of Vibration and Shock, 2022, 41(10): 154-161

参考文献

[1] CRISTINA P, LORENZO L, ALVISE B, et al. Innovative silicon microgrippers for biomedical applications: design, mechanical simulation and evaluation of protein fouling [J]. Actuators, 2018, 7(2): 12.
[2] BRISTON K J, CULLIS A G, INKSON B J. Fabrication of a novel SEM microgripper by electrochemical and FIB techniques [J]. Journal of Micromechanics and Microengineering, 2010, 20(1): 15028-15032.
[3] CLEVY C, LUNGU I, RABENOROSOA K, et al. Positioning accuracy characterization of assembled microscale components for micro-optical benches [J]. Assembly Automation, 2014, 34(1): 69-77.
[4] ZHU W L, ZHU Z W, GUO P, et al. A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics [J]. Mechanical Systems and Signal Processing, 2018, 99 (15): 747-759.
[5] BERRY S M, HARFENIST S A, COHN R W, et al. Characterization of micromanipulator-controlled dry spinning of micro- and sub-microscale polymer fibers [J].Journal of Micromechanics and Microengineering, 2006, 16(9): 1825-1832.
[6] WANG F J, HUO Z C, LIANG C M, et al. A novel actuator-internal micro/nano positioning stage with an arch-shape bridge type amplifier [J]. IEEE Transactions on Industrial Electronics, 2018: 9161-9172
[7] BOUDAOUD M, HADDAB Y, LE GORREC Y. Modeling and optimal force control of a nonlinear electrostatic microgripper [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(3):1130-1139.
[8] ABUZAITER A, NAFEA M, ALI M S M. Development of a shape-memory-alloy micromanipulator based on integrated bimorph micro-actuators [J]. Mechatronics, 2016, 38: 16-28.
[9] GO G, CHOI H, JEONG S, JEONG S, et al. Selective microrobot control using a thermally responsive microclamper for microparticle manipulation [J]. Smart Materials and Structures, 2016, 25(3): 035004.
[10] 李宇鹏,孙红胜,阴学朴. 电热微夹持器的结构设计与数值仿真分析 [J]. 机械设计, 2008, 25(11): 59-62.
Li Yu-peng, Sun Hong-sheng, Yin Xue-pu. Structural design and numerical simulation analysis of electrothermal micro-gripper [J] .Machine Design, 2008, 25(11): 59-62.
[11] YANY Y L, LOU J Q, WU G H, et al. Design and position/force control of an S-shaped MFC microgripper [J]. Sensors and Actuators A: Physical, 2018, 282: 63-78.
[12] 林超,李坪洋,沈忠磊,等. 压电驱动微夹持器特性分析 [J]. 仪器仪表学报, 2019, 40(7): 224-232.
Lin Chao, Li Ping-yang, Shen Zhong-lei, et al. Characteristic analysis of piezoelectric driven micro-gripper [J]. Chinese Journal of Scientific Instrument, 2019, 40(7): 224-232.
[13] ZHU W L, ZHU Z W, TO S, et al. Redundantly piezo-actuated XYθz compliant mechanism for nano-positioning featuring simple kinematics, bi-directional motion and enlarged workspace [J]. Smart Material and Structures, 2016, 25(12): 125002.
[14] DAS T K, SHIRINZADEH B, GHAFARIAN M, et al. Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper [J]. Smart Materials & Structures, 2020, 29(4).
[15] CHEN X D, DENG Z L, HUA S Y, et al. Design of a flexible piezoelectric microgripper based on combined amplification principles [J]. Nanotechnology and Precision Engineering, 2019, 2(3): 138-143.
[16] SUN X T, CHEN W H, FATIKOW S, et al. A novel piezo-driven microgripper with a large jaw displacement [J]. Microsystem Technologies, 2015, 21(4): 931-942.
[17] SHI Q, YU Z Q, WANG H P, et al. Development of a Highly Compact Microgripper Capable of Online Calibration for Multi-Sized Microobject Manipulation [J]. IEEE transactions on Nanotechnology, 2018, 17(4): 657-661.
[18] 时贝超. 柔性非对称式二自由度微操作夹持器设计与控制 [D].天津:天津大学, 2018.
Shi Bei-chao. Design and control of flexible asymmetric two-degree-of-freedom micro-manipulation gripper [D]. Tianjin: Tianjin University, 2018.
[19] XU Q S. Mechanism design and analysis of a novel 2-DOF compliant modular microgripper [C] // 7th IEEE Conference on Industrial Electronics and Applications. Singapore: IEEE, 2012.
[20] CHEN W H, SHI X H, CHEN W J, et al. A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling [J]. Review of Scientific Instruments, 2013, 84: 115111.
[21] ZHU W L, ZHU Z W, SHI Y, et al. Design, modeling, analysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning [J]. Smart Materials and Structures, 2016, 25(11): 115033.

PDF(2130 KB)

353

Accesses

0

Citation

Detail

段落导航
相关文章

/