基于高斯展开法的周期声学黑洞宽频能量回收特性研究

宋婷婷1,2,郑玲1,2,邓杰1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 186-195.

PDF(2779 KB)
PDF(2779 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 186-195.
论文

基于高斯展开法的周期声学黑洞宽频能量回收特性研究

  • 宋婷婷1,2,郑玲1,2,邓杰1,2
作者信息 +

Gaussian expansion method used in a nalysing the broadband energy harvesting characteristics of periodic acoustic black holes

  • SONG Tingting1,2,ZHENG Ling1,2,DENG Jie1,2
Author information +
文章历史 +

摘要

声学黑洞(Acoustic Black Hole, ABH)效应是遵循幂变规律对梁或薄板结构的厚度进行剪裁,使弯曲波在结构尖端波速降至为零而无法发生反射的现象,从而能够在结构末端实现能量的聚集与高效回收。针对单一声学黑洞结构在实现峰值回收时对外界激励频率敏感的问题,提出基于周期声学黑洞的宽频压电能量回收系统。首先基于高斯展开法,建立了耦合压电层的声学黑洞压电俘能半解析模型,并在频域范围内结合能带理论分析了周期数、幂指数、中心截断厚度以及黑洞半径对能量回收特性的影响,最后通过压电能量回收实验,验证了周期声学黑洞对于实现宽频能量回收的有效性。研究结果表明:声学黑洞的各结构参数会通过影响峰值个数、峰值区间长度以及能带结构等因素,对系统的输出功率以及采集效率产生影响。分析结果对实现周期声学黑洞梁的宽频能量回收优化设计具有重要的参考价值。

Abstract

The Acoustic Black Hole (ABH) effect is a phenomenon in which the thickness of the beam or thin plate structure is tailored according to the power law, so that the bending wave speed at the tip of the structure is reduced to zero without reflection, so that energy accumulation and efficient recovery can be realized at the end of the structure. Aiming at the problem that the structure of a single acoustic black hole is sensitive to external excitation frequency when achieving peak recovery, a broadband piezoelectric energy recovery system based on periodic acoustic black holes is proposed. First, based on the Gaussian expansion method, a semi-analytical model of acoustic black hole piezoelectric energy trapping with coupled piezoelectric layers is established, and in the frequency domain combined with energy band theory, the effects of period number, power exponent, central cut-off thickness, and black hole radius on energy recovery are analyzed. Finally, the piezoelectric energy recovery experiment verifies the effectiveness of periodic acoustic black holes for achieving broadband energy recovery. The research results show that the structural parameters of the acoustic black hole will affect the output power of the system and the collection efficiency through factors such as the number of peaks, the length of the peak interval, and the energy band structure. The analysis results have important reference value for realizing the optimal design of broadband energy recovery of periodic acoustic black hole beams.

关键词

声学黑洞 / 压电效应 / 能量回收 / 高斯展开法 / 特性分析

Key words

Acoustic black hole / Piezoelectric effect / Energy harvesting / Gaussian expansion / Characteristic analysis

引用本文

导出引用
宋婷婷1,2,郑玲1,2,邓杰1,2. 基于高斯展开法的周期声学黑洞宽频能量回收特性研究[J]. 振动与冲击, 2022, 41(10): 186-195
SONG Tingting1,2,ZHENG Ling1,2,DENG Jie1,2. Gaussian expansion method used in a nalysing the broadband energy harvesting characteristics of periodic acoustic black holes[J]. Journal of Vibration and Shock, 2022, 41(10): 186-195

参考文献

[1] 何璞,王小东,季宏丽,等. 基于声学黑洞的盒式结构全频带振动控制[J]. 航空学报, 41(2020):23350.
He Pu, Wang Xiaodong, Ji Hongli, et al. Full-band virbration control of box-type structure with acoustic black hole[J]. Acta Aeronautica et Astronautica Sinica, 41(2020):22350.
[2] Nansha Gao, Baozhu Wu, Kuan Lu, et al. Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure[J]. Applied Acoustics, 177(2021): 107906.
[3] Liling Tang, Li Cheng, Hongli Ji, et al. Characterization of acoustic black hole effect using a one-dimensional fully coupled and wavelet- decomposed semi- analytical model[J]. Journal of Sound and Vibration, 374 (2016): 172-184.
[4] 邓杰,郑玲,左益芳,等. 声学黑洞梁的振动能量分布探讨[J]. 噪声与振动控制, 38(2018): 66-70.
Deng Jie, Zheng Ling, Zuo Yifang, et al. Exploration of energy distribution in acoustic black hole beams[J]. Noise and Vibration Control, 38(2018): 66-70.
[5] 曾鹏云,郑玲,左益芳,等. 基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J]. 噪声与振动控制, 38(2018):210-214.
Zheng Peng, Zheng Ling, Zuo Yifang, et al. Analysis of the energy concentration effect of flexural virbration in tapered rods with power-law profile based on semi-analysis method[J]. Noise and Vibration Control, 38(2018):210-214.
[6] Yuhang Wang, Jiangtao Du, Li Cheng. Power flow and structural intensity analysis of Acoustic Black Hole beams[J]. Mechanical Systems and Singal Processing, 131(2019):  538-553.
[7] 黄薇,季宏丽,裘进浩,等.二维声学黑洞对弯曲波的能量聚集效应[J]. 振动与冲击, 36(2017):51-57.
Huang Wei, Ji Hongli, Qiu Jinhao, et,al. Energy focusing effect of Two-dimensional acoustic black hole on flexural waves[J]. Journal of Vibration and Shock, 36(2017):51-57.
[8] 刘波涛,张海龙,王轲,等. 声学黑洞轻质超结构的低频带宽高效隔振机理及实验研究[J]. 西安交通大学学报, 53(2019): 128-134.
Liu Botao, Zhang Hailong, Wang Ke, et al. Acoustic black hole lightweight superstructure with low frequency broadband high effiency sound insulation mechanism and experimental study[J]. Journal of Xi’An Jiaotong University, 53(2019): 128-134.
[9] 王小东,秦一凡,季宏丽,等. 基于声学黑洞效应的直升机驾驶舱宽带降噪[J]. 航空学报, 41(2020):223831.
Wang Xiaodong, Qin Yifan, Ji Hongli, et al. Broadband noise reduction inside helicopter cockpit with acoustic black hole effect[J]. Acta Aeronautica et Astronautica Sinica, 41(2020):223831.
[10] 赵业楠,杨德庆,王博涵. 声学黑洞俘能器在气垫船舱室噪声控制中的应用研究[J]. 中国造船, 61(2020):58-67.
Zhao Yenan, Yang Deqing, Wang Bohan. Application of acoustic black hole energy harvesting in noise control of hovercraft cabin[J]. Shipbuliding of China, 61(2020):58-67.
[11] Miguel Pineirua, Olivier Doare, Sebastien Michelin. Influence and optimization of the electrodes position in a piezoelecreic energy harvesting flag[J]. Journal of Sound and Vibration, 346(2015): 200-215.
[12] Yuteng Cao, Dengqing Cao, Guiqin He, et al. Vibration analysis and distributed piezoelectric energy harvesting design for the L-shaped beam[J]. Europeam Journal of Mechanics / A Solids, 87(2021): 104212.
[13] 汪恒, 郑伟光, 何仕明. 基于声学黑洞的压电俘能结构系统仿真与优化[J]. 压电与声光, 41(2019): 728-732.
Wang Heng, Zhang Weiguang, He Shiming, et al. System simulation and optimization of piezoelectric energy harvesting structure based on acoustic black hole[J]. Piezoelectrics and Acoustooptics, 41(2019): 728-732.
[14] Liuxian Zhao, Stephen C Conlon, Fabio Semperlotti. Broadband energy harvesting using acoustic black hole structural tailoring[J]. Smart Material and Structures, 23(2014): 065021.
[15] 梁玉坤. 基于声学黑洞效应的宽频压电振动能量回收技术研究[D]. 南京:南京航空航天大学, 2019.
Liang Yukun. Reaserch on broadband piezoelectrical vibration energy harvesting using acoustic black hole effect[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[16] Hongli Ji,Yukun Liang,Jinhao Qiu,et al. Enhancement of vibration based on energy harvesting using compound acoustic black holes[J]. Mechanical System and Signal Processing, 132(2019): 441-456.
[17] Jie Deng, Oriol Guasch, Ling Zheng, et al. Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting[J]. Journal of Sound and Vibration, 494(2021): 115790.
[18] Liuxian Zhao, Stephen C Conlon, Fabio Semperlotti. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes[J]. Smart Material and Structures, 24(2015): 0650 39.
[19] Jie Deng, Ling Zheng, Pengyun Zeng, et al. Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams[J]. Mechanical System and Signal Processing, 118(2019): 461-476.
[20] Jie Deng, Ling Zheng, Oriol Guasch, et al. Gaussian expansion for the vibration analysis of plates with multiple acoustic black holes indentations[J]. Mechanical Systems and Signal Processing, 131(2019):317-334.
[21] Alper Erturk, Daniel Inman. 压电能量收集[M]. 国防工业出版社: 300-301.
Alper Erturk, Daniel Inman. Piezoelectric energy harvesting[M]. National Defense Industry Press: 300-301.

PDF(2779 KB)

452

Accesses

0

Citation

Detail

段落导航
相关文章

/