设计出一款基于桥式放大机构的细长形非共振压电直线电机,该电机尺寸为29 mm×5 mm×3.5 mm,论述了其工作原理,建立了物理模型并基于能量守恒原理推导出位移放大机构放大倍数的数学模型,通过仿真和实验验证了数学模型的正确性。根据数学模型得出了影响电机力学性能的各种结构参数,进而对结构参数进行了优化,最后研制出优化后的样机,并对优化前后的样机力学性能进行了实验对比,试验结果显示,当两个驱动信号相位差为90°时,电机的输出驱动力达到最大。优化后的电机在峰值驱动电压为140v、偏置电压为70v、保持力为2.2 N的情况下,电机空载最高转速从6.69 mm/s线性增加到7.67mm/s,速度载荷特性比优化前有了明显的提升。研究结果表明,通过建立正确的数学模型能有效分析出影响电机性能的关键结构参数,改进后的电机力学性能得到显著提升。
Abstract
A slender non resonant piezoelectric linear motor based on bridge amplification mechanism is designed. The size of the motor is 29 mm × 5 mm × 3.5 mm. The working principle of the motor is discussed, and the physical model is established. Based on the energy conservation principle, the mathematical model of the amplification factor of the displacement amplification mechanism is deduced. The correctness of the mathematical model is verified by simulation and experiment. According to the mathematical model, various structural parameters affecting the mechanical properties of the motor are obtained, and then the structural parameters are optimized. Finally, the optimized prototype is developed, and the mechanical properties of the prototype before and after optimization are compared. The test results show that when the phase difference between the two driving signals is 90 °, the output driving force of the motor reaches the maximum. When the peak driving voltage is 140V, the bias voltage is 70V and the holding force is 2.2 N, the maximum no-load speed of the optimized motor increases linearly from 6.69 mm/s to 7.67 mm/s, and the speed load characteristics are significantly improved. The results show that the key structural parameters affecting the motor performance can be effectively analyzed by establishing the correct mathematical model, and the mechanical properties of the improved motor are significantly improved.
关键词
细长形 /
非共振 /
压电电机 /
优化设计
{{custom_keyword}} /
Key words
slender /
non resonance /
piezoelectric motor /
optimization design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] W.S. Chen, Y.X. Liu, J.K. Liu, S.J. Shi, A linear ultrasonic motor using bending vibration transducer with double driving feet, Ferroelectrics. 1 (2010) 221-230.
[2] X.L. Lu, J.H. Hu, Q. Zhang, L. Yang, C.S. Zhao, P. Vasiljev, An ultrasonic driving principle using friction reduction, Sensors and Actuators A: Physical, 2013,199: 187-193.
[3] X.L. Lu, S.Q. Zhou, C.S. Zhao, Finite element method analyses of ambient temperature effects on characteristics of piezoelectric motors, J. Intel. Mat.Syst. Str. 3 (2014) 364-377.
[4] 靳宏,金龙,徐志科,等.压电叠堆位移放大致动器的动态特性[J]. 振动与冲击,2012,31(21):146-150.
Jin Hong, Jin Long, Xu Zhike, et al. Dynamic characteristics of a piezoectric-stack displacement-amplifying actuator [J].Journal of Vibration and Shock,2012,31(21):146-150.(in Chinese)
[5] PARK, J H, BAEK J B, CHO B H,et al. Performance evaluation of switching amplifier in micro-positioning systems with piezoelectric actuator[J]. The Transactions of the Korean Institute of Power Electronics ,2009,14(1 ):62-71.
[6] H. Huang, H.W. Zhao, Z.Q. Fan, H. Zhang, Z.C. Ma, Z.J. Yang, Analysis and experiments of a novel and compact 3-DOF precision positioning platform [J].Journal of Mechanical Science and Technology ,2013,27: 3347-3356.
[7] L. Yung-Tien, T. Higuchi, Precision positioning device utilizing impact force of combined piezo-pneumatic actuator[J].IEEE/ASME Transactions on Mechatronics, 2001,6(4):467-473.
[8] S.K. Nah, Z.W. Zhong, A microgripper using piezoelectric actuation for micro-object manipulation[J].Sensors and Actuators A: Physical , 2007,133(1):218-224.
[9] 张 露,李朝东.背衬封装对卧板式直线超声电机输出推力影响[J]. 振动与冲击,2013,32(11):137-140.
Zhang Lu, LI Chao-dong, Effect of back packaging on output thrust of a board-type horizontal linear ultrasonic Motor[J].Journal of Vibration and Shock,2013,32(11):137-140.
[10] 陈西府,王寅,黄卫清,等.一种非共振式压电叠堆直线电机的机理与设计[J]. 中国电机工程学报,2011,31(15):82-87.
CHEN Xifu, WANG Yin, HUANG Weiqing ,et al. Mechanism and design of linear motor with piezoelec-tric stacks basing on non-resonant vibration [J]. Proceesings of the CSEE, 2011, 31(15):82-87.
[11] 李明,陈西府,卢倩,等.一种直线压电电机驱动足的结构优化设计[J]. 压电与声光,2018,40(6):916-921.
LI Ming, CHEN Xifu, LU Qian,,et al,.Structure Optimization Design of Linear Piezoelectric Motor Drive-foot [J]. Piezoelectrics &Acoustooptics, 2018, 40(6): 916-921.
[12] 官长斌, 陈 君,汪旭东,等.基于系统相似方法的叠堆型压电驱动器非线性动力学建模及实验研究[J]. 振动与冲击,2015,34(9):15-20.
GUAN Chang-bin, CHEN Jun, WANG Xu-dong, et al, Nonlinear dynamic modeling and experiment of stack-type piezoelectric actuator based on system similarity Method[J].Journal of Vibration and Shock, 2015, 34(9):15-20.
[13] X.F. Chen, Y. Wang, M.X. Sun, W.Q. Huang, Linear Piezoelectric Stepping Motor with Broad Operating Frequency, Transactions of Nanjing University of Aeronautics and Astronautics.(2015) 137-142.
[14] Bing Zhang, C.D. Li, Design and experiment of a slender nonresonant linear piezoelectric motor based on bridge-type amplification mechanism, AIP Advances.(2019) 9, 095026-1-8.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}