基于高分辨率Radon变换的瑞利波反演在役路基动模量

杨博1,2,3,龙友明1,刘境奇1,汤跃文1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 244-251.

PDF(4171 KB)
PDF(4171 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 244-251.
论文

基于高分辨率Radon变换的瑞利波反演在役路基动模量

  • 杨博1,2,3,龙友明1,刘境奇1,汤跃文1
作者信息 +

Rayleigh wave back-calculation for the dynamic modulus of subgrades in service based on the high resolution linear radon transform

  • YANG Bo1,2,3,LONG Youming1,LIU Jingqi1,TANG Yuewen1
Author information +
文章历史 +

摘要

为了探索在役路基动模量的一种动态反演与成像方法,本文通过瑞利波在弹性层状体系中的理论频散方程,揭示了瑞利波在基准路基路面结构中的理论频散特征,基于高分辨率线性Radon变换建立了路基路面结构中瑞利波频散曲线的提取方法。在结合高分辨线性Radon变换提取的频散曲线与路基工作区细化分层的基础上,建立了在役路基工作区动模量的反演成像方法。通过在足尺道路试槽内点对点依次进行瑞利波、FWD、承载板和弯沉测试,建立了各测试指标之间的关系。结果显示:瑞利波反演的路基动模量与其它测试方法相应结果的相关系数均大于0.80,且反演成像结果能够正确、清晰地反映路基承载能力与压实工况。

Abstract

In order to explore a dynamic inversion and imaging method of dynamic modulus of Subgrade in service, this research revealed the theoretical dispersion characteristics of Rayleigh wave in the base subgrade and pavement structure by using the theoretical dispersion equation of Rayleigh wave in elastic layered system. Based on the high resolution linear Radon transform, the extraction method of Rayleigh wave dispersion curve in subgrade pavement structure was established. Based on the combination of the dispersion curve extracted by high resolution linear Radon transform and the subdivided layer of subgrade working area, the inversion imaging method of dynamic modulus in the working area of Subgrade in service was was put forward. Through the Rayleigh wave, FWD, bearing plate and deflection tests point-to-point in the full-scale road test slot, the correlations between each measurement index were established. The results show that all the correlation coefficients are more than 0.80 to indicate the back-calculation imaging results can accurately and clearly reflect the subgrade bearing capacity and compaction conditions.

关键词

在役路基 / 动模量 / 瑞利波 / 频散特征 / 高分辨率线性Radon变换 / 无损感知

Key words

subgrade engineering in service / dynamic resilient modulus / Rayleigh wave / dispersion characteristics / high resolution linear Radon transform / non-destructive testing

引用本文

导出引用
杨博1,2,3,龙友明1,刘境奇1,汤跃文1. 基于高分辨率Radon变换的瑞利波反演在役路基动模量[J]. 振动与冲击, 2022, 41(10): 244-251
YANG Bo1,2,3,LONG Youming1,LIU Jingqi1,TANG Yuewen1. Rayleigh wave back-calculation for the dynamic modulus of subgrades in service based on the high resolution linear radon transform[J]. Journal of Vibration and Shock, 2022, 41(10): 244-251

参考文献

[1] 陈声凯, 凌建明, 罗志刚. 路基土回弹模量应力依赖性分析及预估模型[J]. 土木工程学报, 2007, 40(6): 95-99.
CHEN Sheng-kai, LING Jian-ming, LUO Zhi-gang. Stress-dependengt Characteristics and Prediction Model of Resilient Modulus of Subgrade Soils[J]. China Civil Engineering Journal, 2007, 40(6): 95-99.
[2] 张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13.
ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and Prospect of the Prediction Model of the Resilient Modulus of Subgrade Soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13.
[3] YANG B, ZHANG R, ZHA X, et al. Improved Testing Method of Dynamic Cone Penetrometer in Laboratory for Evaluating Compaction Properties of Soil Subgrade[J]. Road Materials and Pavement Design, 2016, 17(2): 487-498.
[4] NAZARIAN S, DESAI M R. Automated Surface Wave Method: Field Testing[J]. Journal of Geotechnical Engineering, 1993, 119(7): 1094-1111.
[5] 徐平, 夏唐代. 饱和度对准饱和土体中瑞利波传播特性的影响[J]. 振动与冲击, 2008, 27(04): 10-13.
XU Ping, XIA Tang-dai. Influence of Saturation Degree on Propagation Characteristics of Rayleigh Waves in Nearly Saturated Soils[J]. Journal of Vibration and Shock, 2008, 27(4): 10-13.
[6] SHEN C, WANG A, WANG L, et al. Resolution Equivalence of Dispersion-imaging Methods for Noise-free High-frequency Surface-wave Data[J]. Journal of Applied Geophysics, 2015, 122: 167-171.
[7] 金聪, 杨文海, 罗登贵, 等. 面波频散曲线提取方法对比分析[J]. 地球物理学进展, 2016, 31(6): 2735-2742.
JIN Cong, YANG Wen-hai, LUO Deng-gui, et al. Comparative Analysis of Extracting Methods of Surface Wave Dispersion Curves[J]. Progress in Geophysics, 2016, 31(6): 2735-2742.
[8] ROSYIDI, SRI A P. Simultaneous In-situ Stiffness and Anomalies Measurement on Pavement Subgrade using Tomography Surface Waves Technique[J]. Procedia Engineering, 2015, 125: 534-540.
[9] 杨博, 张锐, 査旭东, 等. 一种路基动模量测试方法[J]. 岩土力学, 2014, 35(5): 1514-1519
YANG Bo, ZHANG Rui, ZHA Xu-dong, et al. A Method for Testing Dynamic Moduli of Subgrade[J]. Rock and soil Mechanics, 2014, 35(5): 1514-1519.
[10] 杨博, 郑健龙, 查旭东. 刚柔复合式路面动测评价方法与试验研究[J]. 中国公路学报, 2015, 28(05):81-90.
YANG Bo, ZHENG Jian-long, ZHA Xu-dong. Dynamic Testing Evaluation Method and Experimental Research for Rigid-flexible Composite Pavement[J]. China Journal of Highway and Transport, 2015, 28(05): 81-90.
[11] 中交路桥技术有限公司. 公路沥青路面设计规      范:JTG D50—2017 [S].北京:人民交通出版社,2017.
JTG D50-2017, Specifications for Design of High-way Asphalt Pavement[S].
[12] 杨天春, 何继善, 鲁光银, 等. 道路结构型地层瑞利波相速度频散曲线的完整求取[J]. 中南大学学报 (自然科学版), 2013, 44(2): 642-648.
YANG Tian-chun, HE Ji-shan, LU Guang-yin, et al. Holonomic Calculation of Rayleigh Dispersion Curves for Pavement Systems[J]. Journal of Central South University (Science and Technology), 2013, 44(2):642-648.
[13] HU Y , WANG L , CHENG F , et al. Ground-roll noise extraction and suppression using high-resolution linear Radon transform[J]. Journal of Applied Geophysics, 2016, 128: 8-17.
[14] LUO Y , YANG Y , ZHAO K , et al. Unraveling overtone interferences in Love-wave phase velocity measurements by radon transform[J]. Geophysical Journal International, 2018(1): 327-333.
[15] HASKELL N A. The Dispersion of Surface Waves on Multilayered Media[J]. Bulletin of the Seismological Society of America, 1953, 43: 17-34.
[16] ZENG C , XIA J , MILLER R D , et al. An improved vacuum formulation for 2D finite-difference modeling of Rayleigh waves including surface topography and internal discontinuities[J]. Geophysics, 2012, 77(1): 1-9.
[17] 熊章强, 张大洲, 秦臻, 等. 瑞雷波数值模拟中的边界条件及模拟实例分析[J]. 中南大学学报:自然科学版, 2008, 39(4): 824-830.
XIONG Zhang-qiang, ZHANG Da-zhou, QIN Zhen, et al. Boundary conditions and case analysis of numerical modeling of Rayleigh wave[J]. Journal of Central South University (Science and Technology), 2008, 39(4): 824-830.
[18] 常建梅, 冯怀平, 冯文杰. 吸收边界条件下散射波场模拟及其误差分析研究[J]. 振动与冲击, 2005, 24(6): 48-50.
CHANG Jian-mei, FENG Huai-ping, FENG Wen-jie. Numerical Simulation of Wave Scattering with Absorbing Boundary Condition and Its Error Analysis[J]. Journal of Vibration and Shock, 2005, 24(6): 48-50.
[19] 查旭东, 袁盛杰, 肖秋明. 冲击荷载作用下的路基动力反算研究[J]. 长沙理工大学学报(自然科学版) 2014, 11(4): 1-7.
ZHA Xu-dong , YUAN Sheng-jie , XIAO Qiu-ming . Subgrade Dynamic Backcalculation under Impact Loading[J]. Journal of Changsha University of ence & Technology, 2014. 11(4): 1-7.
[20] PAN Yu-di, XIA Jiang-hai, GAO Ling-li, et al. Calculation of Rayleigh-wave phase velocities due to models with a high-velocity surface layer[J]. Journal of Applied Geophysics, 2013, 96(9): 1-6.
[21] ZHANG B, LU L. Rayleigh Wave and Detection of Low-velocity Layers in a Stratified Half-space[J]. Acoustical Physics, 2003, 49(5): 516-528.
[22] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 2009, 179(1): 254-264.
[23] Trad D O, Ulrych T J, MD Sacchi. Accurate interpolation with high-resolution time-variant Radon transforms[J]. Geophysics, 2002, 67(2): 644-656.
[24] 尹晓菲, 胥鸿睿, 夏江海, 等. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018, 61(06):210-225.
YIN Xiao-fei, XU Hong-rui, XIA Jiang-hai, et al. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018, 61(06): 210-225.
[25] 刘俊杰, 乔德清. 克里格法在岩土工程勘察和地基处理与基础设计中的应用[J]. 土木工程学报, 2006(04):82-86.
LIU Jun-jie, QIAO De-qing. Application of Kriging Method for Geotechnical Engineering Exploration and Subgrade Treatment and Foundation Design[J]. China Civil Engineering Journal, 2006, 39(4):82-86.

PDF(4171 KB)

303

Accesses

0

Citation

Detail

段落导航
相关文章

/