AP1000安全壳在大型商用飞机撞击下的动力响应分析

汪大洋1,汪秀清1,杨强1,张永山1,吴成清2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 260-269.

PDF(2778 KB)
PDF(2778 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 260-269.
论文

AP1000安全壳在大型商用飞机撞击下的动力响应分析

  • 汪大洋1,汪秀清1,杨强1,张永山1,吴成清2
作者信息 +

Dynamic response analysis of a large commercial aircraft hitting the AP1000 containment vessel

  • WANG Dayang1, WANG Xiuqing1, YANG Qiang1, ZHANG Yongshan1, WU Chengqing2
Author information +
文章历史 +

摘要

自9•11事件以来,核电站抵御大型商用飞机撞击一直是核安全领域的热点问题。采用ANSYS/LS-DYNA软件建立波音737 max 8和AP1000安全壳的精细化有限元模型,基于Riera法验证了飞机撞击有限元模型准确性,进行了5种不同初始撞击速度(100m/s、150m/s、200m/s、250m/s和300m/s)和5种不同撞击高度(30m、39m、47m、54m和65m)的飞机撞击安全壳全过程数值模拟,研究和分析了飞机的撞击力时程和动能时程、钢制安全壳的动力响应、等效应力分布和其局部破坏情况。结果表明,飞机撞击过程引擎对撞击力的贡献最大,约为机身撞击力的3~4倍;筒身等效钢梁处的撞击力峰值较非等效钢梁处大,最大达到了后者的171%(速度为300m/s);安全壳筒身段与穹顶的交界处为安全壳结构的最危险位置,在此位置处安全壳环向和竖向贯穿尺寸均大于同初始撞击速度下其他位置的贯穿尺寸,最大环向、竖向贯穿尺寸分别达到29.68m、17.86m;当飞机的撞击速度大于150m/s时,撞击区域钢板等效应力影响范围随初始撞击速度的增加而减少,撞击等效钢梁处的钢板等效应力分布范围相对于撞击非等效钢梁处的更大。研究成果可为类似核岛安全壳的抗飞机冲击安全评估和设计提供参考。

Abstract

Since September 11, 2001, the protection of nuclear power plants against the impact of large commercial aircraft has been a hot issue in the field of nuclear safety. Using ANSYS/ls-dyna software, this paper established a Boeing 737 Max 8 and AP1000 refinement finite element model of containment, the plane finite element model are validated based on Riera method, accuracy and validity of the five different initial impact velocity (100 m/s, 150 m/s, 200 m/s, 250 m/s and the 300 m/s) and five different impact height (39 m and 30 m and 47 m, 54 m and 65 m) of the plane struck containment process numerical simulation, The time history of the impact force and kinetic energy of the aircraft, the dynamic response of the steel containment, the equivalent stress distribution and the local damage of the aircraft are studied and analyzed. The research  results show that the engine's contribution to the aircraft impact force is about 3 ~ 4 times of the front of the fuselage, equivalent steel tube body of the peak impact force equivalent beam is not large, the largest is up to 171% of the latter (at the rate of 300 m/s), containment cylinder body and the dome of the junction to the containment structure of the most dangerous position, in this location to containment ring and vertical throughout the size with the initial impact velocity were greater than other locations throughout the size, ring to the largest size is 29.68 m, the largest vertical throughout the size is 17.86 m, the dome in all conditions are not damaged, The equivalent steel beam can withstand the aircraft impact very well, when the impact velocity of the aircraft is greater than 150m/s, the influence range of equivalent steel plate stress in the impact area of the containment vessel decreases with the increase of initial impact velocity, and the distribution range of equivalent steel plate stress in the impact area is larger than that in the non-equivalent steel beam. The research results can provide reference for the safety assessment and design of the similar nuclear island containment vessel against aircraft impact.

关键词

AP1000安全壳 / 商用飞机 / 撞击 / 动力响应 / 数值模拟

Key words

AP1000 containment vessel / commercial aircraft / impact / dynamic response / numerical simulation

引用本文

导出引用
汪大洋1,汪秀清1,杨强1,张永山1,吴成清2. AP1000安全壳在大型商用飞机撞击下的动力响应分析[J]. 振动与冲击, 2022, 41(10): 260-269
WANG Dayang1, WANG Xiuqing1, YANG Qiang1, ZHANG Yongshan1, WU Chengqing2. Dynamic response analysis of a large commercial aircraft hitting the AP1000 containment vessel[J]. Journal of Vibration and Shock, 2022, 41(10): 260-269

参考文献

[1]  核动力厂设计安全规定: HAF 102-2016[S]. 北京: 国家核安全局, 2016.
Safety regulations for nuclear power plant design: HAF 102-2016[S]. Beijing: National Nuclear Security Administration, 2016.
[2]  Sugano T, Tsubota H, Kasai Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3): 373-385.
[3]  Von Riesemann W A, Parrish R L, Bickel D C, et al. Full-scale aircraft impact test for evaluation of impact forces: part1: test plan, test method, and test results[C]//Transactions of the 10th International Conference on Structural Mechanics in Reactor Technology. Raleigh, NC: International Association for Structural Mechanics in Reactor Technology, 1989: 285-292.
[4]  Muto K, Sugano T, Tsubota H, et al. Full-scale aircraft impact test for evaluation of impact forces: part2: analysis of the results[C]//Transactions of the 10th International Conference on Structural Mechanics in Reactor Technology. Raleigh, NC: International Association for Structural Mechanics in Reactor Technology, 1989: 293-299.
[5]  孔建伟, 刘君. CPR1000核电厂安全壳撞击试验研究[J]. 工业建筑, 2017, 47(01): 21-26.
Kong Jianwei, Liu Jun. Experimental study on containment impact of CPR1000 nuclear power plant[J]. Industrial Construction, 2017,47(01):21-26.
[6]  左家红, 韩良弼, 夏祖讽. 秦山核电站安全壳在飞机撞击下的整体动力反应[J]. 中国核科技报告, 1991(01): 121-134.
Zuo Jiahong, Han Liangbi, Xia Zufeng. The overall dynamic response of the containment shell of Qinshan Nuclear Power Station under the impact of an aircraft[J]. China Nuclear Science and Technology Report, 1991(01): 121-134.
[7]  左家红. 秦山核电厂安全壳在飞机撞击下的非线性分析[J]. 核科学与工程, 1992, 12(1): 35-42.
Zuo Jiahong. Nonlinear Analysis of Qinshan Nuclear Power Plant Containment under Aircraft Impact[J]. Nuclear Science and Engineering, 1992, 12(1): 35-42.
[8]  Kukreja M. Damage evaluation of 500 MWe Indian Pressurized Heavy Water Reactor nuclear containment for aircraft impact[J]. Nuclear Engineering and Design, 2005, 235(17): 1807-1817.
[9]  Iqbal M A, Rai S, Sadique M R, et al. Numerical simulation of aircraft crash on nuclear containment structure[J]. Nuclear Engineering and Design, 2012, 243: 321-335.
[10]  Sadique M R, Iqbal M A, Bhargava P. Nuclear containment structure subjected to commercial and fighter aircraft crash[J]. Nuclear Engineering and Design, 2013, 260: 30-46.
[11]  Zhang T, Wu H, Fang Q, Gong Z M. Influences of nuclear containment radius on the aircraft impact force based on the Riera function[J]. Nuclear Engineering and Design, 2015, 293: 196-204.
[12]  Zhang T, Wu H, Fang Q, Huang T. Numerical simulations of nuclear power plant containment subjected to aircraft impact[J]. Nuclear Engineering and Design, 2017, 320: 207-221.
[13]  曹健伟, 方秦, 龚自明, 等. 商用客机对核安全壳撞击破坏效应的数值模拟分析[J]. 工程力学, 2014, 31(9): 63-70.
Cao Jianwei, Fang Qin, Gong Ziming, et al. Numerical Simulation Analysis of the Impact Damage Effect of Commercial Airliner on Nuclear Containment[J]. Engineering Mechanics, 2014, 31(9): 63-70.
[14]  张涛, 方秦, 吴昊, 等. 飞机对核安全壳撞击破坏效应的数值模拟[J]. 解放军理工大学学报(自然科学版), 2014, 15(4): 335-340.
Zhang Tao, Fang Qin, Wu Hao, et al. Numerical Simulation of Aircraft Impact Damage Effect on Nuclear Containment[J]. Journal of PLA University of Science and Technology(Natural Science Edition) , 2014, 15(4): 335-340.
[15]  Wang D Y, Zhang Y S, Wu C Q, et al. Seismic performance of base-isolated AP1000 shield building with consideration of fluid-structure interaction[J]. Nuclear Engineering and Design, 2019, 353: 110241.
[16]  Wang D Y, Zhuang C L, Zhang Y S. Seismic response characteristics of base-isolated AP1000 nuclear shield building subjected to beyond-design basis earthquake shaking[J]. Nuclear Engineering & Technology, 2018, 50(1): 170-181.
[17]  Wang D Y, Wu C Q, Zhang Y S, et al. Elastic-plastic behavior of AP1000 nuclear island structure under mainshock-aftershock sequences[J]. Annals of nuclear energy, 2019, 123: 1-17.
[18]  Wang D Y, Wu C Q, Huang W , et al. Vibration investigation on fluid-structure interaction of AP1000 shield building subjected to multi earthquake excitations[J]. Annals of nuclear energy, 2019, 126: 312-329.
[19] Westinghouse Electric Corporation, AP1000 Design Control Document[R], Rev. 19, 2011.
[20]  姚洪灿, 谭平, 周福霖. 商用飞机撞击刚性墙的荷载时程分析方法[J]. 自然灾害学报, 2019, 28(02): 49-59.
Yao Hongcan, Tan Ping, Zhou Fulin. Load time analysis method for commercial aircraft hitting rigid walls[J]. Journal of Natural Disasters, 2019, 28(02): 49-59.
[21]  赵馨怡. 核电站安全壳在地震及飞机撞击下的安全性分析[D]. 清华大学, 2018.
Zhao Xinyi. Safety analysis of nuclear power plant safety shell under earthquake and aircraft impact[D]. Beijing: Tsinghua University, 2018.
[22]  Boeing Commercial Airplanes. D6-38A004 737 MAX Airplane Characteristics for Airport Planning[R]. Seattle, WA:Boeing Commercial Airplanes, 2017.
[23] 林丽, 陆新征, 韩鹏飞, 岑松, 刘晶波. 大型商用飞机撞击刚性墙及核电屏蔽厂房的撞击力分析[J]. 振动与冲击, 2015, (9): 158-163.
Lin L, Lu X Z, Han P F, et al. Analysis of impact inforce of large commercial aircraft on rigid wall and nuclear power plant containment. Journal of Vibration and Shock, 2015, 9: 158-163.
[24]  Bodner S R , Symonds P S. Test and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading[J]. Journal of Applied Mechanics, 1962, 29: 719-728.
[25] Riera J D. A critical reappraisal of nuclear power plant safety against accidental aircraft impact[J]. Nuclear Engineering and Design, 1980, 57(1): 193-206.

PDF(2778 KB)

Accesses

Citation

Detail

段落导航
相关文章

/