预应力双柱式摇摆墩结构体系摇摆谱分析

王宝夫1,2,石钰3,石祥锋1,张红芬1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 270-277.

PDF(1808 KB)
PDF(1808 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 270-277.
论文

预应力双柱式摇摆墩结构体系摇摆谱分析

  • 王宝夫1,2,石钰3,石祥锋1,张红芬1
作者信息 +

Rocking spectrum of a post-tensioned double-column rocking bridge system

  • WANG Baofu1,2, SHI Yu3, SHI Xiangfeng1, ZHANG Hongfen1
Author information +
文章历史 +

摘要

摇摆桥墩的损伤和残余位移小,具有良好的震后可恢复性。本文以预应力双柱式摇摆墩结构体系为研究对象,考虑预应力筋对摇摆刚度的影响,基于拉格朗日方程和动量矩守恒定理给出预应力双柱式摇摆墩的刚体动力分析模型,并进行脉冲型地震动作用下的摇摆谱分析。研究结果表明:长周期脉冲地震动作用下,预应力筋可以有效减轻低墩的地震反应;随着桥墩高度的增加或地震动频率的增加,预应力筋对桥墩地震反应的影响降低,桥墩依靠自身转动惯量抵抗地震作用;负摇摆刚度既可有效避免桥墩的倒塌,又能减轻脚点处的局部损伤,可在摇摆墩设计时采用。

Abstract

Rocking bridge piers can exhibit minor damage and residual displacements, displaying superior post-earthquake performance. This paper investigates the rocking response of double-column rocking bridge system which is enhanced with elastic prestressed central tendons. Following Lagrange equation and momentum conservation law, a dynamic analytical model is derived where the effect of the prestressing force of the tendons are considered. The analytical model is used to construct rocking spectrum of post-tensioned double-column rocking bridge system under pulse-type ground motions. The results show that the post-tensioned tendons are effective in reducing the response of double-column rocking bridge with small columns when subjected to long period excitations. With the increase of the size of the column or the frequency of the excitation, the influence of the tendons on the rocking response becomes marginal, whereas the bridge pier mainly depend on the rotational inertia of their columns to resist the earthquake action. Rocking bridge system with negative stiffness, which can effectively avoid the collapse of the pier without inducing local damage at the pivoting points, can be used in seismic design of double-column rocking bridge system.

关键词

预应力筋 / 摇摆体系 / 双柱式桥墩 / 分析模型 / 摇摆谱

Key words

post-tensioned tendons / rocking system / double-column pier / analytical model ;rocking spectrum

引用本文

导出引用
王宝夫1,2,石钰3,石祥锋1,张红芬1. 预应力双柱式摇摆墩结构体系摇摆谱分析[J]. 振动与冲击, 2022, 41(10): 270-277
WANG Baofu1,2, SHI Yu3, SHI Xiangfeng1, ZHANG Hongfen1. Rocking spectrum of a post-tensioned double-column rocking bridge system[J]. Journal of Vibration and Shock, 2022, 41(10): 270-277

参考文献

[1]李建中,管仲国.桥梁抗震设计理论发展:从结构抗震减震到震后可恢复设计[J]. 中国公路学报,2017,30(12):1-9.
LI Jian-zhong, GUAN Zhong-guo. Research progress on bridge seismic design: Target from seismic alleviation to post-earthquake structural resilience[J].China Journal of Highway and Transport,2017,30(12):1-9.
[2]杜修力,周雨龙,韩强.摇摆桥墩的研究综述[J].地震工程与工程振动,2018,38(5):1-11.
DU Xiu-li, ZHOU Yu-long, HAN Qiang. State-of-the-art on rocking piers[J]. Earthquake Engineering and Engineering Dynamics,2018,38(05): 1-11.
[3]司炳君, 谷明洋, 孙治国, 等. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10):87-97.
Si Bing-jun, Gu Ming-yang, Sun Zhi-guo, et al. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions [J].Engineering Mechanics, 2017, 34(10): 87-97.
[4]韩强,贾振雷,何维利,等.自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报,2017,30(12):169-177.
HAN Qiang, JIA Zhen-lei, HE Wei-li, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017,30(12):169-177.
[5]Makris N, Vassiliou M F. Planar rocking response and stability analysis of an array of free-standing columns capped with a freely supported rigid beam[J]. Earthquake Engineering and Structural Dynamics,2013,42(3):431-449.
[6]Housner G W. The behavior of inverted pendulum structures during earthquakes [J]. Bulletin of the Seismological Society of America, 1963,53(2): 403-417.
[7]Makris N, Vassiliou M F. Dynamics of the rocking frame with vertical restrainers[J]. Journal Structural Engineering, 2015,141(10): 04014245.
[8]Giouvanidis A I, Dimitrakopoulos E G. Seismic Performance of Rocking Frames with Flag-Shaped Hysteretic Behavior[J]. Journal of Engineering Mechanics, 2017, 143(5): 04017008.
[9]周雨龙, 杜修力,韩强.双柱式摇摆桥墩结构体系地震反应和倒塌分析[J].工程力学,2019,36(7):136-145.
ZHOU Yu-long, DU Xiu-li, HAN Qiang. Seismic response and overturning of double-column rocking column bridge system[J]. Engineering Mechanics, 2019,36(7):136-145.
[10]张育智.摇摆自复位高墩高阶效应研究[J]. 振动与冲击,2018,37(24):66-71.
ZHANG Yu-zhi. A study on the higher mode effect of rocking self-centering tall piers [J]. Journal of Vibration and Shock, 2018,37(24):66-71.
[11]Vassiliou M F. Seismic response of a wobbling 3D frame [J]. Earthquake Engineering and Structural Dynamics. 2017,47(5):1212-1228.
[12]Vassiliou M F, Burger S, Egger M, Bachmann J A, Broccardo M, Stojadinovic B. The three-dimensional behavior of inverted pendulum cylindrical structures during earthquakes[J]. Earthquake Engineering and Structural Dynamics. 2017.46(14):2261-2280.
[13] Beck J L, Skinner R I. The seismic response of a reinforced concrete bridge pier designed to step[J]. Earthquake Engineering and Structural Dynamics, 1974,2(4):343-358.
[14]Routledge P J, Cowan M J, Palermo A. Low-damage detailing for bridges—a case study of Wigram-Magdala bridge[C]. Proceedings New Zealand Society for Earthquake Engineering Conference, 2016.
[15]Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design [R]. Technical Report NCEER-97-0014. Buffalo: State University of New York at Buffalo, 1997.
[16]Cheng C T. Shaking table tests of a self-centering designed bridge substructure[J]. Engineering Structures, 2008, 30(12):3426–3433.
[17]Yu-Long Zhou, Qiang Han, Xiu-Li Du, Zhen-lei Jia. Shaking table tests of post-tensioned rocking bridge with double-column bents[J]. Journal of Bridge Engineering,2019, 24(8): 04019080.
[18]Palermo A, Pampanin S, Marriott D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007,133(11):1648–1661.
[19]Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009,38(3): 331–354.
[20]Kam W Y, Pampanin, S, Palermo , Carr A J. Self-centering structural systems with combination of hysteretic and viscous energy dissipations[J]. Earthquake Engineering and Structural Dynamics,39(10):1083–1108.
[21]Acikgoz S, and DeJong M J. The rocking response of large flexible structures to earthquakes[J]. Bulletin of Earthquake Engineering,2014, 12(2):875–908.
[22]Vassiliou, M F, Makris N. Estimating time scales and length scales in pulse like earthquake acceleration records with wavelet analysis[J]. Bulletin of Seismological Society of America,2011, 101(2):596–618.
[23]Ricker N. Further developments in the wavelet theory of seismogram structure[J]. Bulletin of Seismological Society of America, 1943,33(3): 197–228.

PDF(1808 KB)

308

Accesses

0

Citation

Detail

段落导航
相关文章

/