MFC致动器的动态迟滞模型辨识及补偿控制

卢荣华1,陈特欢1,2,娄军强1,2,崔玉国1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 301-308.

PDF(1491 KB)
PDF(1491 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 301-308.
论文

MFC致动器的动态迟滞模型辨识及补偿控制

  • 卢荣华1,陈特欢1,2,娄军强1,2,崔玉国1
作者信息 +

Identification and compensation control of the dynamic hysteresis model of MFC actuators

  • LU Ronghua1, CHEN Tehuan1,2, LOU Junqiang1,2, CUI Yuguo1
Author information +
文章历史 +

摘要

压电宏纤维(Marco Fiber Composite,MFC)具有柔性好、变形能力强的优点。但MFC致动器驱动的柔性臂的迟滞非线性严重影响系统定位精度。本文提出一种具有非对称性的改进Prandtl-Ishlinskii(PI)迟滞模型,解决经典PI迟滞模型的缺陷(对称性)。该模型基于经典PI迟滞模型,叠加一系列不同权重、不同阈值的双边死区算子获得。基于最小二乘法的迟滞模型辨识结果表明,改进PI迟滞模型对MFC致动器的迟滞建模误差从PI迟滞模型误差的16.06%降到5.58%。另外,建立系统的离散传递函数模型来描述系统的线性动态特性,并与改进PI迟滞模型串联得到组合模型,解决纯迟滞模型仅能描述低频、准静态情况下的迟滞特性问题。在前馈补偿下,对MFC致动的柔性臂进行正弦波轨迹跟踪实验,测得补偿后实测位移与期望跟踪位移基本吻合,跟踪精度达到93.62%以上。实验结果证明所提出的改进PI迟滞模型、离散传递函数模型及补偿方法的有效性。

Abstract

Piezoelectric Macro Fiber Composite (Marco Fiber Composite, MFC) has the advantages of good flexibility and strong deformability. However, the hysteresis and nonlinearity of the flexible arm driven by the MFC actuator seriously affect the positioning accuracy of the system. This paper proposes an improved Prandtl-Ishlinskii (PI) hysteresis model with asymmetry to solve the defects (symmetry) of the classic PI hysteresis model. This model is obtained by superimposing a series of bilateral dead zone operators with different weights and different thresholds based on the classic PI hysteresis model. The hysteresis model identification results based on the least square method show that the improved PI hysteresis model has reduced the modeling error of the MFC actuator from 16.06% of the PI hysteresis model to 5.58%. Besides, the discrete transfer function model of the system is established to describe the linear dynamic characteristics of the system. The discrete transfer function model and the improved PI hysteresis model are connected in series to obtain a combined model. It solves the problem that the pure hysteresis model can only describe the hysteresis characteristics under low-frequency and quasi-static conditions. Under the feedforward compensation, a sinusoidal wave trajectory tracking experiment is performed on the flexible arm actuated by MFC. The measured displacement after compensation is basically consistent with the expected tracking displacement, and the tracking accuracy is over 93.62%. Experimental results demonstrate the effectiveness of the proposed improved PI hysteresis model, discrete transfer function model and compensation method.

关键词

压电宏纤维 / 迟滞非线性 / 双极性非对称 / 改进PI迟滞模型 / 离散传递函数模型 / 前馈补偿

Key words

piezoelectric Macro Fiber Composite / hysteresis nonlinearity / bipolar asymmetry / improved PI hysteresis model / transfer function model / feedforward compensation

引用本文

导出引用
卢荣华1,陈特欢1,2,娄军强1,2,崔玉国1. MFC致动器的动态迟滞模型辨识及补偿控制[J]. 振动与冲击, 2022, 41(10): 301-308
LU Ronghua1, CHEN Tehuan1,2, LOU Junqiang1,2, CUI Yuguo1. Identification and compensation control of the dynamic hysteresis model of MFC actuators[J]. Journal of Vibration and Shock, 2022, 41(10): 301-308

参考文献

[1] Aridogan U, Basdogan I. A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers[J]. Journal of Intelligent Material Systems & Structures,2015,26(12):1455-1476.
[2] Qiu Z C, Han J D, Zhang X M, et al. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator[J]. Journal of Sound & Vibration,2009,326(3-5):438-455.
[3] Sethi V, Song G. Multimodal vibration control of a flexible structure using piezoceramic sensor and actuator[J]. Journal of Intelligent Material Systems & Structures, 2008,19(5):573-582.
[4] Karthik R, Prasath S G, Swathi K R. Surface morphing using macro fiber composites[J]. Materials Today: Proceedings, 2018,5(5):12863-12871.
[5] 林秀娟,周科朝,张晓泳,等. 压电纤维复合材料的发展、模拟及应用(英文).中国有色金属学报:英文版, 2013,23(1),98-107.
LIN Xiu-juan, ZHOU Ke-chao, ZHANG Xiao-yong, et al. Development, modeling and application of piezoelectric fiber composites[J].Transactions of Nonferrous Metals Society of China, 2013, 23(1), 98-107.
[6] Wu K, Fang H F, Lan L. Static and dynamic analyses of composite beam bonded with MFC actuator[J]. Journal of Harbin Institute of Technology (New Series), 2020, 27(02):79-90.
[7] Wang G, Guan C L, Zhang X J, et al. Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model[J]. Optics and Laser Technology, 2014,57:26-31.
[8] Ruderman M, Hoffmann F, Bertram T, et.al. Modeling and identification of elastic robot joints with hysteresis and backlash[J]. IEEE Transactions on Industrial Electronics, 2009,56(10):3840-3847.
[9] Su C Y, Feng Y, Hong H, et al. Adaptive control of system involving complex hysteretic nonlinearities: a generalised Prandtl-Ishlinskii modelling approach[J]. International Journal of Control,2009,82(10):1786-1793.
[10] Li Z, Shan J J. Modeling and inverse compensation for coupled hysteresis in piezo-actuated Fabry–Perot spectrometer[J]. IEEE/ASME Transactions on Mechatronics,2017,22(4):1903-1913.
[11] 王龙飞,邓亮,刘萍. 基于改进果蝇优化的压电精密定位平台迟滞Bouc-Wen模型辨识 [J].计算机工程与应用, 2020, 56(2): 242-247.
WANG Long-fei, DENG Liang, LIU Ping. Improved fruit fly optimization based hysteresis bouc-wen model identification of piezoelec-tric precision positioning stages [J]. Computer Engineering and Applications, 2020, 56(2): 242-247.
[12] 徐子睿,许素安,富雅琼等. 基于Duhem前馈逆补偿的压电陶瓷迟滞非线性自适应滑模控制 [J].传感技术学报,2019,32(8):1209-1214.
XU Zi-rui, XU Su-an, FU Ya-qiong, et al. Piezoelectric ceramic hysteresis nonlinear adaptive sliding mode control based on Duhem feedforward inverse compensation [J]. Chinese Journal of Sensors and Actuators, 2019, 32(8): 1209-1214.
[13] 裘进浩, 陈海荣, 陈远晟等. 压电驱动器的非对称迟滞模型 [J].纳米技术与精密工程(英文), 2012,10(3):189-197.
QIU Jin-hao, CHEN Hai-rong, CHEN Yuan-sheng, et al. A model for asymmetric hysteresis of piezoelectric actuators [J]. Nano-technology and Precision Engineering (English), 2012, 10(3): 189-197.
[14] 胡俊峰,何建康,杨明立. 压电式二维微定位平台的率相关迟滞建模 [J]. 振动与冲击, 2020, 39(6): 104-110.
HU Jun-feng, HE Jian-kang, YANG Ming-li. Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage [J]. Vibration and Shock, 2020, 39(6): 104-110.
[15] 陈高华,闫献国,郭宏,等. 压电陶瓷振动传感器的迟滞非线性误差补偿研究 [J]. 振动与冲击, 2018, 37(23): 278-285.
CHEN Gao-hua, YAN Xian-guo, GUO Hong, et al. Error compensation for hysteresis nonlinearity of piezoelectric ceramic vibration sensors [J]. Journal of Vibration and Shock, 2018, 37(23): 278-285.
[16] Adly A A, Abd-El-Hafiz S K. Using neural networks in the identification of preisach-type hysteresis models[J]. IEEE Transactions on Magnetics,1998,34(3):629-635.
[17] Kuhnen K. Modeling identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach[J]. European Journal of Control,2003,9(4): 407-418.
[18] Wang G, Chen G Q, Zhou H, et al. Modeling and tracking control for piezoelectric actuator based on a new asymmetric hysteresis model[J]. IEEE/CAA Journal of Automatica Sinica,2017,4(4):782-791.
[19] 王钰锋,郭咏新,毛剑琴. 压电作动器的率相关迟滞建模与跟踪控制 [J].光学 精密工程,2014,22(3):616-625.
WANG Yu-feng, GUO Yong-xin, MAO Jian-qin. Rate-dependent modeling and tracking control of piezoelectric actuators [J]. Optics and Precision Engineering, 2014, 22(3): 616-625.
[20] Liu H S, Zhu L, Pan Z H, et al. ARMAX-based transfer function model identification using wide-area measurement for adaptive and coordinated damping control[J]. IEEE Transactions on Smart Grid,2017,8(3): 1105-1115.
[21] 王一凡,赵成勇,郭春义. 直驱风电场与柔直互联系统的传递函数模型及其低频振荡稳定性分析 [J].中国电机工程报, 2020, 40(5): 1485-149.
WANG Yi-fan, ZHAO Cheng-yong, GUO Chun-yi. Transfer function model and low-frequency stability analysis for PMSG-based wind farm interconnected with flexible-HVDC system [J]. Proceedings of the CSEE, 2020, 40(5): 1485-149.

PDF(1491 KB)

449

Accesses

0

Citation

Detail

段落导航
相关文章

/