Infogram和参数优化CYCBD在滚动轴承复合故障特征分离中的应用

刘桂敏1,2,吴建德1,2,李卓睿1,2,李祥1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 55-65.

PDF(3089 KB)
PDF(3089 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (10) : 55-65.
论文

Infogram和参数优化CYCBD在滚动轴承复合故障特征分离中的应用

  • 刘桂敏1,2,吴建德1,2,李卓睿1,2,李祥1,2
作者信息 +

Application of the Infogram and parameter optimization CYCBD in rolling bearing composite fault feature separation

  • LIU Guimin1,2,WU Jiande1,2,LI Zhuorui1,2,LI Xiang1,2
Author information +
文章历史 +

摘要

针对滚动轴承复合故障特征难以分离的问题,提出了一种基于Infogram和参数优化最大二阶循环平稳盲解卷积(Maximum second-order cyclostationarity blind deconvolution,CYCBD)的复合故障特征分离方法。首先,采用Infogram方法分析故障信号,选取最优带通滤波器,获得冲击性和循环平稳性最强的频带信号;其次,根据理论故障频率,设定CYCBD的循环频率集,并以包络谱稀疏度为依据,自适应选择CYCBD的滤波器长度;再次,对获得的频带信号进行解卷积运算,提取不同频率的故障冲击成分,实现故障分离;最后,对分离出的各故障成分进行包络解调分析,根据故障特征频率,识别故障类型。通过对仿真信号、西安交大-昇阳科技联合实验室(Xi’an Jiaotong University-Changxing Sumyoung Technology,XJTU-SY)的轴承实验数据分析,证明了所提方法可以有效实现故障特征分离。在此基础上,通过自制实验平台实测数据,进一步论证了该方法的可行性。

Abstract

To solve the problem that it is difficult to separate the composite fault features of rolling bearings, a composite fault feature separation method was proposed based on Infogram and parameter optimization for Maximum second-order cyclostationarity blind deconvolution (CYCBD). Firstly, the Infogram method is adopted to analyze the fault signal and the optimal bandpass filter is selected to obtain the frequency band signal with the strongest impact and cyclic stationarity. Secondly, the cyclic frequency set of CYCBD is set according to the theoretical fault frequency, and the filter length of CYCBD is adaptively selected based on the sparsity of envelope spectrum. Thirdly, deconvolution operation is carried out on the acquired frequency band signals to extract fault shock components of different frequencies to realize fault separation. Finally, the separated fault components are analyzed by envelope demodulation, and the fault types are identified according to the fault characteristic frequency. Through the analysis of simulation signal and bearing experimental data from Xi'an Jiaotong University-Changxing Sumyoung Technology (XJTU-SY), the proposed method is proved to be able to effectively achieve the separation of fault characteristics. On this basis, the effectiveness of the method is further verified by the measured data of the self-made experimental platform.

关键词

复合故障 / Infogram / 最大二阶循环平稳盲解卷积 / 包络谱稀疏度

Key words

compound fault / Infogram / Maximum second-order cyclostationarity blind deconvolution / Sparsity of envelope spectrum

引用本文

导出引用
刘桂敏1,2,吴建德1,2,李卓睿1,2,李祥1,2. Infogram和参数优化CYCBD在滚动轴承复合故障特征分离中的应用[J]. 振动与冲击, 2022, 41(10): 55-65
LIU Guimin1,2,WU Jiande1,2,LI Zhuorui1,2,LI Xiang1,2. Application of the Infogram and parameter optimization CYCBD in rolling bearing composite fault feature separation[J]. Journal of Vibration and Shock, 2022, 41(10): 55-65

参考文献

[1] He C, Wu T, Gu R, et al. Rolling bearing fault diagnosis based on composite multiscale permutation entropy and reverse cognitive fruit fly optimization algorithm – Extreme learning machine[J]. Measurement, 2020, 108636.
[2] 戴俊,王俊,朱忠奎,等. 基于生成对抗网络和自动编码器的机械系统异常检测[J]. 仪器仪表学报,2019,40(9):16-26.
DAI Jun, WANG Jun, ZHU Zhong-kui, et al. Anomaly detection of mechanical systems based on generated adversation network and autoencoder[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 16-26.
[3] 向玲,李营. 风力发电机轴承复合故障特征提取方法研究 [J]. 振动与冲击,2020,39(9):144-151, 187.
XIANG Ling, LI Ying. Study on feature extraction method of wind turbine bearing composite fault[J]. Journal of Vibration and Shock, 2020, 39(9): 144-151, 187.
[4] 王梦阳,王华庆,董方,等. 基于EVMD-LNMF的复合故障信号分离方法[J]. 振动与冲击,2019,38(16):146-152.
WANG Meng-yang, WANG Hua-qing, DONG Fang, et al. Multi-fault signal separation method based on EVMD-LNMF [J]. Journal of Vibration and Shock, 2019, 38(16): 146-152.
[5] 陈鹏. 关键传动件变工况下的时变信号特征表征及自适应监测诊断方法研究[D]. 电子科技大学,2020.
CHEN Peng. Study on time-varying signal characteristic characterization and adaptive monitoring and diagnosis method of key transmission parts under variable working conditions[D]. University of Electronic Science and Technology of China, 2020.
[6] 张雄. 基于谱峭度类算法的滚动轴承故障特征提取及诊断研究[D]. 华北电力大学(北京),2019.
ZHANG Xiong. Research on Rolling Bearing Fault Feature Extraction and Diagnosis Based on Spectral Kurtosis Algorithm[D]. North China Electric Power University (Beijing), 2019.
[7] Hong L, Liu X, Zuo H. Compound faults diagnosis based on customized balanced multiwavelets and adaptive maximum correlated kurtosis deconvolution[J]. Measurement, 2019, 146: 87-100.
[8] 于明奇,夏均忠,白云川,等. 基于NLM与Infogram的滚动轴承故障特征提取[J]. 军事交通学院学报,2018,20(4):35-41.
YU Ming-qi, XIA Jun-zhong, BAI Yun-chuan, et al. Rolling bearing fault feature extraction based on NLM and Infogram[J]. Journal of Military Transportation Institute, 2018, 20(4): 35-41.
[9] 张龙,熊国良,黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报,2015,51(3):129-138.
Zhang Long, Xiong Guo-liang, Huang Wen-yi. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering, 2015, 51(3): 129-138.
[10] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
[11] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[12] 王宏超,陈进,董广明,等. 基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J]. 振动与冲击,2013,32(1):35-37,48.
WANG Hong-chao, CHEN Jin, DONG Guang-ming, et al. Application of resonance demodulation method based on fast kurtogram algorithm in rolling bearing fault feature extraction [J]. Journal of Vibration and Shock, 2013, 32(1): 35-37, 48.
[13] 李宏坤,杨蕊,任远杰,等. 利用粒子滤波与谱峭度的滚动轴承故障诊断[J]. 机械工程学报,2017,53(3):63-72.
LI Hong-kun, YANG Rui, REN Yuan-jie, et al. Rolling bearing fault diagnosis based on particle filtering and spectral kurtosis[J]. Journal of Mechanical Engineering, 2017, 53(3): 63-72.
[14] Antoni J. The infogram: Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems & Signal Processing, 2016, 74(1): 73-94.
[15] 夏均忠,于明奇,黄财,等. 基于Infogram的共振解调方法在滚动轴承故障特征提取中的应用[J]. 振动与冲击,2018,37(12):29-34.
XIA Jun-zhong, YU Ming-qi, HUANG Cai, et al. Application of resonance demodulation method based on Infogram in rolling bearing fault feature extraction[J]. Journal of Vibration and Shock, 2018, 37(12): 29-34.
[16] Mcdonald G L, Zhao Q, Zou M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems & Signal Process, 2012, 33(1): 237-255.
[17] 杨斌,张家玮,樊改荣,等. 最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究[J]. 振动与冲击,2019,38(11):59-67.
YANG Bin, ZHANG Jia-wei, FAN Gai-rong, et al. Research on application of optimal parameter MCKD and ELMD in bearing composite fault diagnosis[J]. Journal of Vibration and Shock, 2019, 38(11): 59-67.
[18] 刘文朋,廖英英,杨绍普,等. 一种基于多点峭度谱和最大相关峭度解卷积的滚动轴承故障诊断方法[J]. 振动与冲击,2019,38(2):146-151, 163.
LIU Wen-peng, LIAO Ying-ying, YANG Shao-pu, et al. Fault diagnosis of rolling bearings based on multipoint kurtosis spectrums and the maximum correlated kurtosis deconvolution method[J]. Journal of Vibration and Shock, 2019, 38(2): 146-151, 163.
[19] Buzzoni M, Antoni J, D'Elia G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J]. Journal of Sound and Vibration, 2018, 432: 569-610.
[20] 赵晓涛,孙虎儿,姚巍. 基于CYCBD和包络谱的滚动轴承微弱故障特征提取[J]. 机械传动,2020,44(4):165-169, 176.
ZHAO Xiao-tao, SUN Hu-er, YAO Wei. Weak Fault Feature Extraction of Rolling Bearing Based on CYCBD and Envelope Spectrum[J]. Journal of Mechanical Transmission, 2020, 44(4): 165-169, 176.
[21] 杨斌,张家玮,王建国,等. 基于CEEMD和自适应MCKD诊断滚动轴承早期故障[J]. 北京工业大学学报 2019,45(2):111-118.
YANG Bin, ZHANG Jia-wei, WANG Jian-guo, et al. Early Fault Diagnosis of Rolling Bearing Based on CEEMD and Adaptive MCKD[J]. Journal of Beijing University of Technology, 2019, 45(2): 111-118.
[22] 张长森,赵秋实,吴君. 基于Infogram的重复瞬态特征提取与旋转机械故障诊断[J].测控技术,2018,37(7):64-68.
ZHANG Chang-sen, ZHAO Qiu-shi, WU Jun. Repetitive Transient Feature Extraction and Rotating Machinery Fault Diagnosis Based on Infogram[J]. Measurement and Control Technology, 2018, 37(7): 64-68.
[23] 胥永刚,田伟康,曹金鑫,等. 精细谱负熵及其在滚动轴承故障诊断中的应用[J]. 西安交通大学学报,2019, 53(8): 31-39, 128.
XU Yong-gang, TIAN Wei-kang, CAO Jin-xin, et al. A fine spectral negentropy method and its application to fault diagnosis of rolling bearing[J]. Journal of Xi 'an Jiaotong University, 2019, 53(8): 31-39, 128.
[24] Tse P W, Wang D. The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as “Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement – Parts 1 and 2”[J]. Mechanical Systems and Signal Processing, 2013, 40(2): 499-519.
[25] 唐贵基,王晓龙. 基于包络谱稀疏度和最大相关峭度解卷积的滚动轴承早期故障诊断方法[J]. 中国机械工程,2015,26(11):1450-1456.
TANG Gui-ji, WANG Xiao-long. Early Fault Diagnosis Method for Rolling Bearings Based on Sparse Envelope Spectrum and Maximal Correlation Kurtosis Dconvolution [J].China Mechanical Engineering, 2015, 26(11): 1450-1456.
[26] 唐贵基,王晓龙. IVMD融合奇异值差分谱的滚动轴承早期故障诊断[J]. 振动.测试与诊断,2016,36(4):700-707,810.
TANG Gui-ji, WANG Xiao-long. Early Fault Diagnosis of Rolling Bearing Based on IVMD Fusion of Singular Value Differential Spectrum[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 700-707, 810.
[27] 周杰. 基于CYCBD与HRE的滚动轴承故障智能诊断方法研究[D]. 中北大学,2020.
ZHOU Jie. Research on Intelligent Fault Diagnosis Method of Rolling Bearing Based on CYCBD and HRE[D]. North University of China, 2020.
[28] 胡爱军,赵军,孙尚飞,等. 基于谱峭度和最大相关峭度解卷积的滚动轴承复合故障特征分离方法[J]. 振动与冲击,2019,38(4):158-165.
HU Ai-jun, ZHAO Jun, SUN Shang-fei, et al. Feature separation method of rolling bearing composite fault based on spectral kurtosis and maximum correlation kurtosis ddeconvolution[J]. Journal of Vibration and Shock, 2019, 38(4): 158-165.
[29] Wang B, Lei Y, Li N, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 99: 1-12.

PDF(3089 KB)

470

Accesses

0

Citation

Detail

段落导航
相关文章

/