针对圆弧齿轮泵由空化造成的振动问题,提出一种基于经验模态分解(ensemble empirical mode decomposition,EEMD)的圆弧齿轮泵空化流动及振动特性试验方法。以圆弧齿轮泵空化试验平台为基础,引入EEMD分解及希尔伯特边际谱分析技术,得到了不同转速及不同出口压力下的监测点的频域结果,实现了对圆弧齿轮泵振动特性的研究。试验表明:EEMD分解及希尔伯特边际谱分析技术,可以有效地识别圆弧齿轮泵出口振动特征;在额定出口压力下,随着工作转速的增大,泵出口处振动加速度信号的振动主要引起低频段能级上的增加,其中以1000Hz至1500Hz尤为剧烈,形成能级最大的谱峰;在额定转速下,随着出口压力的增大,振动加速度信号的边际谱峰值、中心频率位置及频率变化范围呈现出先增大后减小再增大的趋势;进一步可提取圆弧齿轮泵振动加速度信号的边际谱峰值、中心频率以及带宽作为泵空化特征参数进行分析。
Abstract
In order to solve the vibration problem of circular arc gear pumps caused by cavitation, an experimental method of cavitation flow and vibration characteristics of circular arc gear pump based on ensemble empirical mode decomposition(EEMD) is proposed. Based on the cavitation test platform of circular arc gear pumps, EEMD and Hilbert marginal spectrum analysis techniques were introduced to obtain the frequency domain results of monitoring points at different speeds and different outlet pressures, and the vibration characteristics of circular arc gear pump were studied. The test results show that EEMD and Hilbert marginal spectrum analysis technology can effectively identify the outlet vibration characteristics of circular gear pump. At the rated outlet pressure, the vibration acceleration signal at the pump outlet mainly causes the increase of the energy level in the low frequency band, especially in the case of 1000Hz to 1500Hz with the increase of the working speed. At the rated speed, the marginal spectrum peak value, center frequency position and frequency variation range of vibration acceleration signal show a trend of first increasing, then decreasing and then increasing with the increase of outlet pressure. Furthermore, the peak value of marginal spectrum, center frequency and bandwidth of vibration acceleration signal of circular gear pump can be extracted as the characteristic parameters of pump cavitation.
关键词
空化振动 /
圆弧齿轮泵 /
经验模态分解(EEMD) /
边际谱
{{custom_keyword}} /
Key words
cavitation vibration /
circular arc gear pumps /
ensemble empirical mode decomposition(EEMD) /
Marginal spectrum
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Battarra M, Mucchi E. Incipient cavitation detection in external gear pumps by means of vibro-acoustic measurements[J]. Measurement, 2018, 129: 51-61.
[2] Rundo M. Models for flow rate simulation in gear pumps: A review[J]. Energies, 2017, 10(9): 1261.
[3] 强彦,王文安,罗小梅等.宽温域条件下齿轮泵内流场空化强度的变化规律[J].兰州理工大学学报,2019,4505:44-49.
QIANG Yan, WANG Wenan, LUO Xiaomei, et al. Variation regularity of cavitation intensity in flow field of gear pump operating under condition of broad range of temperature. Journal of Lanzhou University of Technology, 2019, 4505: 44-49.
[4] Adamkowski A, Henke A, Lewandowski M. Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers[J]. Engineering Failure Analysis, 2016, 70(01): 56-72.
[5] Gohil P P, Saini R P. Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant[J]. Energy, 2015, 93(01): 613-624.
[6] Azizi R, Attaran B, Hajnayeb A, et al. Improving accuracy of cavitation severity detection in centrifugal pumps using a hybrid feature selection technique[J]. Measurement, 2017, 108(01): 9-17.
[7] Buono D, di Cola FDS, Senatore A, et al. Modelling approach on a Gerotor pump working in cavitation conditions[J]. Energy Procedia, 2016, 101(01): 701-709.
[8]李阁强,张龙飞,韩伟锋,邓效忠,冯勇.双圆弧斜齿齿轮泵脉动特性分析及齿形设计[J].中国机械工程,2018,29(02):186-192.
LI Geqiang, ZHANG Longfei, HAN Weifeng, et al. Pulsation Characteristic Analysis and Tooth Profile Design of Double-circular-arc Helical Gear Pumps[J]. China mechanical engineering, 2019,38(03):89-95.
[9] 孟璐,刘影,黄彪,高远,吴钦.绕弹性水翼非定常空化流激振动特性研究[J].工程力学,2017,34(08):232-240.
MENG Lu, LIU Ying, HUANG Biao, et al. Investigation of Flow-Induced Vibration Characteristics of Flexible Hydrofoil in Unsteady Cavitation. Engineering Mechanics, 2017, 34(08): 232-240.
[10] Wei Haipeng,Fu Song,Wu Qin,Huang Biao,Wang Guoyu. Experimental and numerical research on cavitating flows around axisymmetric bodies[J]. Journal of Mechanical Science and Technology,2014,28(11).
[11] 刘秀梅,徐化文,李贝贝等.液压节流阀内非定常空化特性的数值分析[J].振动与冲击,2019,38(03):89-95.
LIU Xiumei, XU Huawen, LI Beibei, et al. Numerical analysis for unsteady cavitation characteristics in throttle valve[J]. Journal of vibration and shock, 2019,38(03):89-95.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}