针对PD控制下轴向电磁轴承-转子系统,运用多尺度法详细研究了控制器比例增益、微分增益以及扰动力对系统软硬弹簧特性的影响,并根据骨架线方程推导出判别软硬弹簧特性的条件;使用四阶Runge-Kutta方法探究转子非线性振动及分岔。研究结果表明:扰动力对软硬弹簧特性没有影响;无量纲比例增益"K" _"p" 增大时系统会在软弹簧与硬弹簧特性之间切换,"K" _"p" 大于2时表现为软弹簧特性;微分增益较大时幅频特性曲线发生分裂,稳态解不再具有多值现象;随着扰动频率的增加,发生二次Hopf分岔,转子振动由周期-1变为拟周期振动,拟周期情况下振动形式为拍振,在基频"f" _"0" 附近存在相近的频率"f" _"0" "±" "f" _"b" 。
Abstract
For the axial magnetic bearing-rotor system with PD control, the effects of proportional gain, differential gain and disturbance force on the soft-spring or hard-springs characteristics were studied using the multi-scale method. The conditions for judging the soft-spring or hard-springs characteristics were also derived according to the skeleton line equation. The nonlinear vibration and bifurcation was investigated using the 4th order Runge-Kutta method. The results show that the disturbance force has no effect on the soft-spring and hard-springs characteristics and the system switches between the soft-spring and hard-spring characteristics as the dimensionless proportional gain "K" _"p" increases. It behaves soft-spring characteristics when "K" _"p" is greater than 2. When the differential gain is large, the resonance curve will split, and the steady solution will no longer have multiple values. A second Hopf bifurcation occurs, and the rotor vibration changes from period-1 to quasi-period as the disturbance frequency increases. In the quasi-periodic case, the form of vibration is the beat vibration. There are frequency "f" _"0" ±"f" _"b" near the fundamental frequency "f" _"0" .
关键词
电磁轴承 /
非线性振动 /
软硬弹簧特性 /
多尺度法
{{custom_keyword}} /
Key words
magnetic bearing /
nonlinear vibration /
soft and hard spring characteristics /
multi-scale method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SCHWEITZER G, MASLEN E H. Magnetic bearing: theory, design, and application to rotating machinery [M]. Berlin, Germany: Springer, 2009.
[2] INOUE T, ISHIDA Y. Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force[J]. Nonlinear Dynamics, 2008. 52(1): 103-113.
[3] 刘学平,朱戡. 考虑涡流效应的磁悬浮转子非线性振动分析[J]. 轴承. 2019(03): 52-57.
LIU Xueping, ZHU Kan. Nonlinear vibration analysis of magnetic suspension rotor considering eddy current effect[J]. BEARING. 2019(03): 52-57.
[4] EISSA M H, HEGAZY U H, AMER Y A. Dynamic behavior of an AMB supported rotor subject to harmonic excitation[J]. Applied Mathematical Modelling. 2008. 32(7): 1370-1380.
[5] KANG K, PALAZZOLO A. Homopolar Magnetic Bearing Saturation Effects on Rotating Machinery Vibration[J]. IEEE Transactions on Magnetics. 2012. 48(6):1984-1994.
[6] XU X B, FANG J C, WEI T. Stability analysis and imbalance compensation for active magnetic bearing with gyroscopic effects[C]//8th IEEE International Symposium on Instrumentation and Control Technology (ISICT) Proceedings. London. 2012.
[7] JI J C, HANSEN C H. Nonlinear oscillations of a rotor in active magnetic bearings[J]. Journal of Sound and Vibration. 2001. 240(4): 599-612.
[8] JAWAID I, INAYAT-HUSSAIN. Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings[J]. Chaos, Solitons and Fractals,2009.41(5):2664-2671.
[9] 徐璐,饶晓波,褚衍东. 磁悬浮转子-轴承碰摩系统的非线性动力学行为[J]. 机械强度. 2020.42(01):7-14.
XU Lu, RAO Xiaobo, CHU Yandong. Nonlinear dynamics of the magnetic rotor bearing system with rub-impact force[J]. JOURNAL OF MECHANICAL STRENGTH.2020.42(01):7-14.
[10] YANG Y, ZHANG L Y, ZHANG Y X. Dynamic characteristics analysis of cracked magnetic rotor-bearing system[C]// 8th Annual International Conference on Material Science and Engineering .Guiyang:ICMSE, 2020.
[11]王小虎,鄢光荣,胡瑶尧,等. Alford力和磁悬浮轴承对转子系统动力学特性的影响[J]. 振动与冲击. 2020. 39(08): 222-229.
WANG Xiaohu, YAN Guangrong, HU Yaoyao, et al. The influence of Alford force and active magnetic bearing on the dynamic behavior of a rotor system[J]. JOURNAL OF VIRATION AND SHOCK. 2020. 39(08): 222-229.
[12] SAEED N A, EISSA M, EI-GANINI W A. Nonlinear oscillations of rotor active magnetic bearings system[J]. Nonlinear Dynamics, 2013.74(1):1-20
[13] ZHANG W, WU R Q, SIRIGULENG B. Nonlinear vibrations of a rotor-active magnetic bearing system with 16-pole legs and two degrees of freedom [J].Shock and Vibration, 2020.
[14] GHAZAVI M R, SUN Q. Bifurcation onset delay in magnetic bearing systems by time varying stiffness[J]. Mechanical Systems and Signal Processing. 2017. 90: 97-109.
[15] CHANG S C. Nonlinear dynamics and suppressing chaos in magnetic bearing system[J]. Mathematical Problems in Engineering. 2020.
[16] 胡海岩. 应用非线性动力学[M]. 北京:航空工业出版社, 2000.
[17] 韩丹夫. 数值计算方法[M]. 浙江:浙江大学出版社, 2006.
[18] 高辉,徐龙祥. 主动磁悬浮轴承系统拍振现象分析[J]. 机械工程学报. 2011. 47(13): 104-112.
GAO Hui, XU Longxiang. Analysis of beat vibration for active magnetic bearing system[J]. Journal of mechanical engineering. 2011. 47(13): 104-112.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}