中间支撑刚度对双跨梁屈曲稳定性的影响

毛晓晔1,邵志华1,舒送2,范鑫2,3,丁虎1,陈立群1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 1-9.

PDF(2298 KB)
PDF(2298 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 1-9.
论文

中间支撑刚度对双跨梁屈曲稳定性的影响

  • 毛晓晔1,邵志华1,舒送2,范鑫2,3,丁虎1,陈立群1
作者信息 +

Effect of intermediate support stiffness on buckling stability of a double-span beam

  • MAO Xiaoye1, SHAO Zhihua1, SHU Song2, FAN Xin2,3, DING Hu1, CHEN Liqun1
Author information +
文章历史 +

摘要

研究了中间弹性支撑对受轴向压力的双跨梁屈曲稳定性的影响。分别采用整体以及分段方式建立了带中间弹性支撑的双跨梁模型,通过计算固有频率以及临界屈曲压力,相互验证了两种模型,并得到临界轴力随中间支撑刚度的变化规律。在此基础上,用整体梁模型分析双跨梁的静力学屈曲分岔现象,着重讨论了中间约束刚度对屈曲位形的影响。研究发现,在中间支撑刚度小于一个临界值时,随着支撑刚度的增加,虽然一阶屈曲位形逐渐远离简支屈曲梁的半周期正弦位形,但依然是稳定的;只是需要越来越高阶的截断,才能得到收敛的屈曲位形。而当中间支撑刚度超过临界值后,二阶位形变得稳定;仅采用单周期的正弦函数就足够精确描述屈曲位形,并且中间支撑刚度对临界轴力不再产生影响。该研究将为带中间支撑的梁或者管道设计提供理论指导。

Abstract

The influence of the supporting stiffness at the middle point on the buckling stability of a two-span beam is investigated for the first time. By treating the two-span beam as one continuous beam and two beams separately, two kinds of governing equations are obtained. Based on these two equations, the natural frequencies and the critical buckling axial force changing with the bearing stiffness at the middle point are studied. The results indicate that both of these two equations are corrected as they can verify each other. Consequently, more detailed investigations are carried out via the continuous model as it is more convenient than the two-beams model. The investigation finds that the bearing stiffness plays a key role in the calculation and the stability of the nontrivial configuration. While the stiffness is increasing, higher order truncation of natural modes is needed to deduce a convergent first-order nontrivial configuration. Meanwhile, the configuration will be far from the half-periodic SIN function but always stable under a critical bearing stiffness. After that, the second-order nontrivial configuration will take the stable position of it. Only the second-order natural mode is accurate enough to describe the new nontrivial configuration. The work proposes some analytical suggestions for the design of beams or pipes with bearings at the middle point.

关键词

双跨梁 / 屈曲 / 压杆稳定 / 截断

Key words

two-span beam / buckling / stability / truncation

引用本文

导出引用
毛晓晔1,邵志华1,舒送2,范鑫2,3,丁虎1,陈立群1. 中间支撑刚度对双跨梁屈曲稳定性的影响[J]. 振动与冲击, 2022, 41(11): 1-9
MAO Xiaoye1, SHAO Zhihua1, SHU Song2, FAN Xin2,3, DING Hu1, CHEN Liqun1. Effect of intermediate support stiffness on buckling stability of a double-span beam[J]. Journal of Vibration and Shock, 2022, 41(11): 1-9

参考文献

[1] Gomes J P P, Rodrigues L R, Leao B P, et al. Using Degradation Messages to Predict Hydraulic System Failures in a Commercial Aircraft [J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(1): 214-224.
[2] Mehmood Z, Hameed A, Javed A, et al. Analysis of premature failure of aircraft hydraulic pipes [J]. Engineering Failure Analysis, 2020, 109.
[3] Gao P, Yu T, Zhang Y, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review [J]. Chinese Journal of Aeronautics, 2020.
[4] Mao X-Y, Ding H, Chen L-Q. Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime [J]. Nonlinear Dynamics, 2016, 86(2): 795-809.
[5] 张挺,林震寰,郭晓梅等. 基于广义有限差分法的输流直管振动响应特性研究[J]. 振动与冲击, 2019, 38(24): 165-171.
Zhang Ting,Lin Zhen-huan,Guo Xiao-mei,et al. Numerical simulation of vibration response of pipe conveying fluid based on a generalized finite difference method [J]. Journal of vibration and shock, 38(24): 165-171.
[6] Tan X, Ding H, Sun J-Q, et al. Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid [J]. Ocean Engineering, 2020, 203.
[7] Khodabakhsh R, Saidi A R, Bahaadini R. An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects [J]. Applied Ocean Research, 2020, 101.
[8] 肖笛,王忠民. 基于辛方法的功能梯度圆柱壳振动特性分析[J]. 应用力学学报, 2019, 36(3): 704-710.
Xiao Di,Wang Zhongmin. Analysis of vibration characteristics of functionally graded cylindrical shells based on Symplectic method [J]. Chinese journal of applied mechanics, 2019, 36(3): 704-710.
[9] 卢学军,李彦启,王开和等. 圆柱壳结构振动特性研究[J]. 天津科技大学学报, 2005, 20(2): 35-27.
Lu Xue-jun, Li Yan-qi, Wang Kai-he, et al. Study the Vibratory Characteristics of Cylindrical Shell Structure [J]. Journal of Tianjin University of Science & Technology, 2005, 20(2): 35-27.
[10] 张紫龙,唐敏,倪樵. 非线性弹性地基上悬臂输流管的受迫振动[J]. 振动与冲击, 2013, 32(10): 17-21.
Zhang Zi-long,Tang Min,Ni Qiao. Forced vibration of a cantilever fluid-conveying pipe on nonlinear elastic foundation [J]. Journal of vibration and shock, 2013, 32(10): 17-21.
[11] 梁峰,包日东. 输流管道含有内共振的横向受迫振动研究[J]. 工程力学, 2015, 32(4): 185-190.
Liang Feng, Bao Ri-dong. Transverse forced vibration with internal resonance of a pipe conveying fluid [J]. Engineering Mechanics, 2015, 32(4): 185-190.
[12] 金基铎,杨晓东,尹峰. 两端铰支输流管道在脉动内流作用下的稳定性和参数共振[J]. 航空学报, 2003, 24(4): 317-322.
Jin Ji-duo, Yang Xiao-dong. Stability and Parametric Resonances of a Pinned-Pinned Pipe Conveying Pulsating Fluid [J]. Acta aeronautica et astronautica sinica, 2003, 24(4): 317-322.
[13] 方孟孟,郭长青. 分布随从力作用下双参数非线性弹性地基上简支输流管道的参激振动[J]. 南华大学学报, 2019, 33(3): 69-77.
Fang Mengmeng,Guo Changqing. Parametric Vibration of Simply Supported Pipes Conveying Fluid on Two-parameter Nonlinear Elastic Foundation with Distributed Follower Force [J]. Journal of University of South China, 2019, 33(3): 69-77.
[14] Ding H, Chen L-Q. Equilibria of axially moving beams in the supercritical regime[J]. Archive of Applied Mechanics, 2009, 81(1): 51-64.
[15] Zhang G-C, Ding H, Chen L-Q, et al. Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds[J]. Journal of Sound and Vibration, 2012, 331(7): 1612-1623.
[16] 许锋,郭长青,黄建红. 弹性支承输流管道在分布随从力作用下的稳定性[J]. 工程力学, 2014, 31(7): 234-238.
Xu Feng , Guo Chang-qing , Huang Jian-hong. Stability of elastically supported pipes conveying fluid with distributed follower force [J]. Engineering Mechanics, 2014, 31(7): 234-238.
[17] Shahali P, Haddadpour H, Kordkheili S a H. Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow [J]. Applied Ocean Research, 2020, 94.
[18] Dodds,H.L.,Runyan,H., Effect of high-velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe. National Aeronautics and Space Administration Report NASA TN D-2870, June 1965.
[19] Hozhabrossadati S M, Aftabi Sani A, Mofid M. Free vibration analysis of a beam with an intermediate sliding connection joined by a mass-spring system [J]. Journal of Vibration and Control, 2014, 22(4): 955-964.
[20] 叶茂,张鹏,傅继阳等.连续梁桥的车桥耦合演变随机振动[J]. 振动与冲击, 2014, 33(3): 76-82.
Ye Mao,Zhang Peng,Fu Ji-yang, et al. Coupled vehicle-bridge evolutionary random vibration for a multi-span continuous bridge with elastic bearings [J]. Journal of vibration and shock, 2014, 33(3): 76-82.
[21] 叶茂,谭平,任珉等.支承各种边界条件连续梁模态分析[J]. 工程力学, 2010, 27(9): 80-85.
Ye Mao , Tan Ping, Ren Min, et al.. Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions [J]. Engineering Mechanics, 2010, 27(9): 80-85.
[22] Gao P-X, Zhai J-Y, Yan Y-Y, et al. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft [J]. Aerospace Science and Technology, 2016, 49: 144-153.
[23] 赵小颖,李彪,丁虎,陈立群. 中间约束轴向运动梁横向非线性振动[J]. 振动与冲击, 2019, 38(5): 142-145.
Zhao Xiao-ying, Li Biao, Ding Hu, et al. Nonlinear transverse vibration of an axially moving beam with an intermediate spring constraint [J]. Journal of vibration and shock, 2019 38(5): 142-145.

PDF(2298 KB)

323

Accesses

0

Citation

Detail

段落导航
相关文章

/