随着航行在海上船舶数量的增加,船舶碰撞事故发生的概率也逐渐增加。球鼻船艏是船舶常见的设计形式,目前,对于船舶正撞场景的研究明显多于船舶斜撞场景,然而统计数据表明,船舶斜撞事故发生的概率要高于船舶正撞事故。因此,本文针对船舶球鼻艏斜撞舷侧结构开展了研究。研究中建立了符合球鼻船艏斜撞场景特征的舷侧外板拉伸变形模型、桁材变形模型以及横向肋板变形模型,运用塑性力学理论推导得到了这三种构件在斜撞过程中的变形阻力解析计算公式。此外,利用有限元软件LS_DYNA进行数值模拟,验证了解析计算结果的准确性。研究成果对于船舶舷侧结构耐撞性的评估具有较好的工程应用价值。
Abstract
With the increase of the number of ships sailing on the sea, the probability of ship collision accident also increases gradually. A bulbous bow is a common design form of a ship. Currently, the researches on head-on ship collision scenarios are more than those of oblique ship collision scenarios. However, statistical data show that the probability of oblique ship collision is quite higher than that of head-on ship collision. This paper carries out an investigation on the oblique collision scenarios when a bulbous bow impacting the ship side structures. The theoretical deformation models of the side shell plating, the web girder and the transverse frame are established, and the analytical calculation formulas of these three components in the process of oblique collision are derived by using the plastic mechanics theory. In addition, the finite element software LS_DYNA is used for numerical simulation to verify the accuracy of analytical calculation results. The research results have good engineering application value for evaluating the crashworthiness of ship side structures.
关键词
船舶斜撞 /
球鼻艏 /
解析计算方法 /
数值模拟 /
耐撞性
{{custom_keyword}} /
Key words
Oblique ship collision /
bulbous bow /
analytical calculation method /
numerical simulation /
crashworthiness
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YAMADA Y, ICHIKAWA K, KAMITA K, et al. Effects of highly ductile steel on the crashworthiness of hull structures in ship to ship collision[J]., 2015: V2T-V3T.
[2] MINORSKY V U. An analysis of ship collisions with reference to protection of nuclear power plants[J]. Journal of Ship Research, 1958, 3(2): 1-4.
[3] PEDERSEN P T, VALSGARD S, OLSEN D, et al. Ship impacts: Bow collisions[J]. International Journal of Impact Engineering, 1993, 13(2): 163-187.
[4] AMDAHL J. Energy absorption in ship-platform impacts[J]. Impact Loads, 1983.
[5] WANG G, ARITA K, LIU D. Behavior of a double hull in a variety of stranding or collision scenarios[J]. Marine Structures, 2000, 13(3): 147-187.
[6] LIU K, WANG Z, TANG W, et al. Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of strain rate[J]. Ocean Engineering, 2015, 99: 44-54.
[7] LIU B, SOARES C G. Effect of strain rate on dynamic responses of laterally impacted steel plates[J]. International Journal of Mechanical Sciences, 2019, 160: 307-317.
[8] 王自力, 顾永宁. 船舶碰撞动力学过程的数值仿真研究[J]. 爆炸与冲击,2001(1):29-34.
WANG Zili, GU Yongning. Numerical simulation of ship/ship collisions[J]. Journal of Explosion and Shock waves, 2001(1):29-34.
[9] 刘敬喜, 叶文兵, 徐建勇, 等. 内河双壳油船舷侧结构耐撞性分析[J]. 中国造船,2010(001):219-226.
LIU Jingxi, YE Wenbing, XU Jianyong, et al. Crashworthiness analysis for inland double hull tanker side structures[J]. Shipbuilding of China, 2010(1):219-226.
[10] 刘昆, 王自力, 张延昌, 等. 基于全耦合技术的船体结构碰撞性能研究[J]. 船舶力学,2015(5):574-581.
LIU Kun, WANG Zili, ZHANG Yanchang, et al. Collision behavior of structural analysis in ship collisions based on full-coupling technology[J]. Journal of Ship Mechanics, 2015, 19(5):574-581.
[11] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 13(1): 10-15.
[12] 高振国, 胡志强. 船舶碰撞搁浅中强肋框承受面内载荷时变形机理研究[J]. 振动与冲击,2015(8):55-60.
GAO Zhenguo, HU Zhiqiang. Structural deformation mechanism analysis of web girders during ship collision and grounding accidents[J]. Journal of Vibration and Shock, 2015,34(8):55-60.
[13] HONG L, AMDAHL J. Crushing resistance of web girders in ship collision and grounding[J]. Marine Structures, 2008, 21(4): 374-401.
[14] LEE Y W, WOERTZ J C, WIERZBICKI T. Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification[J]. International Journal of Mechanical Sciences, 2004, 46(5): 751-781.
[15] HARIS S, AMDAHL J. An analytical model to assess a ship side during a collision[J]. Ships & Offshore Structures, 2012, 7(4): 431-448.
[16] SØREIDE T H. Ultimate load analysis of marine structures[M]. Trondheim:Tapir, 1985.
[17] WANG Z, LIU K, CHEN G, et al. An analytical method to assess the structural responses of ship side structures by raked bow under oblique collision scenarios[J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2020, 235(2):147509022098027.
[18] WANG Z, HU Z, LIU K, et al. Application of a material model based on the Johnson-Cook and Gurson-Tvergaard-Needleman model in ship collision and grounding simulations[J]. Ocean Engineering, 2020, 205: 106768.
[19] YAMADA Y, ENDO H. Experimental and numerical study on the collapse strength of the bulbous bow structure in oblique collision[J]. Marine Technology, 2008, 45(1): 42-53.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}