深水隔水管-测试管系统非线性动力学模型研究

何玉发1,郭晓强2,刘清友3,柳军2,王国荣2,毛良杰3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 104-113.

PDF(2808 KB)
PDF(2808 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 104-113.
论文

深水隔水管-测试管系统非线性动力学模型研究

  • 何玉发1,郭晓强2,刘清友3,柳军2,王国荣2,毛良杰3
作者信息 +

Nonlinear dynamic model of deep-water RTS

  • HE Yufa1, GUO Xiaoqiang2, LIU Qingyou3, LIU Jun2, WANG Guorong2, MAO Liangjie3
Author information +
文章历史 +

摘要

在深水测试工况中,隔水管-测试管系统受到海流VIV效应、自身纵横向耦合效应以及测试管FIV效应,极易发生屈曲变形、疲劳断裂和摩擦穿孔等破坏问题。笔者采用微元法、能量法结合哈密顿变分原理建立了深水隔水管-测试管系统非线性振动模型,基于弹塑性体接触碰撞理论,提出了管柱系统非线性接触载荷计算方法。采用三次Hermit差值形函数和Newmark-β法离散并求解系统振动模型。借助现场管柱参数,采用相似原理,设计了隔水管-测试管系统非线性振动模拟实验台架,测得隔水管和测试管的振动响应,与理论模型计算结果和单管振动模型计算结果对比,验证了深水隔水管-测试管系统非线性振动模型的正确性和有效性。在此基础上,分析了南中国海实例井管柱振动特性,表明在测试管振动疲劳分析时,不能忽略其自身局部高频振动的影响;测试管易发生强度失效的位置主要出现在中上部和下部。研究成果为深水测试管-隔水管的安全设计奠定理论基础。

Abstract

In deep water test conditions, the riser-test pipe system (RTS) is subject to current VIV effect, longitudinal and transverse coupling effect and test pipe FIV effect, which is prone to buckling deformation, fatigue fracture and friction perforation. The nonlinear vibration model of deep-water RTS is established by using the differential element method, energy method and Hamilton variational principle. Based on the elastic-plastic body contact collision theory, the nonlinear contact load calculation method of the pipe string system is proposed. The cubic Hermit difference shape function and Newmark -β method are used to discretize and solve the vibration model of the system. With the help of field string parameters and similarity principle, a nonlinear vibration simulation test bench for the RTS is designed. The vibration responses of the RTS are measured. Compared with the theoretical model calculation results and the single pipe vibration model calculation results, the correctness and effectiveness of the nonlinear vibration model of the deep-water RTS are verified. On this basis, the vibration characteristics of the casing string in the South China Sea are analyzed. The results show that the influence of local high-frequency vibration cannot be ignored in the vibration fatigue analysis of the test pipe; the position where the strength failure of the testing pipe is easy to occur mainly occurs in the middle upper part and the lower part. The research results lay a theoretical foundation for the safety design of deep-water RTS.

关键词

隔水管-测试管系统 / 哈密顿变分原理 / 非线性振动模型 / 模拟实验 / 振动特性

Key words

RTS / Hamilton variational principle / Nonlinear vibration model / Simulation experiment / Vibration characteristics

引用本文

导出引用
何玉发1,郭晓强2,刘清友3,柳军2,王国荣2,毛良杰3. 深水隔水管-测试管系统非线性动力学模型研究[J]. 振动与冲击, 2022, 41(11): 104-113
HE Yufa1, GUO Xiaoqiang2, LIU Qingyou3, LIU Jun2, WANG Guorong2, MAO Liangjie3. Nonlinear dynamic model of deep-water RTS[J]. Journal of Vibration and Shock, 2022, 41(11): 104-113

参考文献

[1] Williamson C., Govardan R.. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420(420), 85-130.
[2] Dahl J.M., Hover F.S., Triantafyllou M.S., et al. Dual resonance in vortex-induced vibrations at subcritical and supercritical reynolds numbers[J]. Journal of Fluid Mechanics, 2010, 643(3), 395-424.
[3] Facchinetti M.L., Langre E.D., Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids & Structures, 2004, 19(2), 123-140.
[4] Chaplin J.R., Bearman P.W., Huarte F.J. H., at al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of Fluids & Structures, 2005, 21(1), 3-24.
[5] Huera-Huarte F.J., Bangash Z.A., González L.M. Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders[J]. Journal of Fluids & Structures, 2014, 48, 81-92.
[6] Gao Y., Fu S., Wang J., at al. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder[J]. Ocean Engineering, 2015, 103(1):40-54.
[7] Gao Y., Fu S.X., Xiong Y.M., et al. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a riser[J]. Journal of Ship Mechanics. 2015, 19:1-15.
[8] Pham D.C., Sridhar N., Qian X., et al. A review on design, manufacture and mechanics of composite risers[J]. Ocean Engineering, 2016, 112, 82-96.
[9] Martins F.A.C., Avila J.P.J.. Effects of the Reynolds number and structural damping on vortex-induced vibrations of elastically-mounted rigid cylinder[J]. International Journal of Mechanical Sciences, 2019, 156, 235-249.
[10] 谷家扬, 杨琛, 朱新耀, 吴介. 质量比对圆柱涡激特性的影响研究[J]. 振动与冲击, 2016, 35(4):134-140.
GU Jiayang, YANG Chen, ZHU Xinyao, et al. Influences of mass ratio on vortex induced vibration characteristics of a circular cylinder [J]. Journal of Vibration and Shock, 2016, 35(4):134-140.
[11] 高光海,崔运静,仇性启,等. 深海顶张力立管涡激振动响应及参数影响[J]. 船舶工程, 2019, 41(02):101-107
GAO Guanghai, CUI Yunjing, QIU Xingqi, et al. Parameter influencing analysis of vortex-induced vibration response of deep sea top tensioned riser[J]. Shipbuilding Engineering, 2019, 41(2): 101-107.
[12] 陈东阳,肖清,顾超杰,等. 柱体结构涡激振动数值计算[J].振动与冲击, 2020, 39(19):7-12+47.
CHEN Dongyang, XIAO Qing, GU Chaojie, et al. Numerical Calculation of vortex-induced vibration of a cylinder structure[J]. Journal of Vibration and Shock, 2020, 39(19):7-12+47.
[13] 田晓洁,谢大帅,刘贵杰,等. 基于ANSYS的气液两相流海洋立管流固耦合特性分析[J]. 振动与冲击, 2021, 40(07):260-267.
TIAN Xiaojie, XIE Dashuai, LIU Guijie, et al. Analysis of fluid-structure interaction characteristics of gas-liquid two-phase flow marine riser based on ANSYS[J]. Journal of Vibration and Shock, 2021, 40(07):260-267.
[14] 孔腾腾,王嘉松,吴文波,等. 考虑附属管的实尺寸钻井隔水管系统涡激振动二维数值模拟研究[J]. 振动与冲击, 2021, 40(02):15-22.
KONG Tengteng, WANG Jiasong, WU Wenbo, et al. Two-dimensional numerical simulation of VIV for an actual drilling riser system considering auxiliary lines[J], Journal of Vibration and Shock, 2021, 40(02):15-22.
[15] Liu J., Zhao H., Liu Q., et al. Dynamic behavior of a deepwater hard suspension riser under emergency evacuation conditions[J]. Ocean Engineering, 2018,150, 138-151.
[16] Mao L., Zeng S., Liu Q.. Dynamic mechanical behavior analysis of deep water drilling riser under hard hang-off evacuation conditions[J]. Ocean Engineering, 2019, 183, 318-331.
[17] 柳军,郭晓强,刘清友,等.考虑顺流向和横流向耦合作用的海洋立管涡激振动响应特性[J].石油学报, 2019, 40(10):1270-1280.
LIU Jun, GUO Xiaoqiang, LIU Qingyou, et al. Vortex induced vibration response characteristics of marine riser considering the in-line and cross-flow coupling effect[J]. Acta Petrolei Sinica, 2019,40(10):1270-1280.
[18] 郑孟添,袁昱超,薛鸿祥,等. 浮体垂荡激励下深海悬链线立管触地端动力响应及沟槽发展研究[J]. 振动与冲击, 2020, 39(21):34-41+54.
ZHENG Mengtian, YUAN Yuchao, XUE Hongxiang, et al. Dynamic response and trench development of deep-sea steel catenary riser touchdown section under floating bodies’ heave excitation[J]. Journal of Vibration and Shock, 2020, 39(21): 34-41+54.
[19] Aitken J.. An account of some experiments on rigidity produced by centrifugal force[J]. Philosophical magazine, 1878(5):81-105.
[20] 邓元洲. 高产气井油管柱振动机理分析及疲劳寿命预测[D]. 成都: 西南石油大学,2006.
DENG Yuanzhou. Vibration mechanism analysis and fatigue life prediction of tubing string in high production gas well[D]. Chengdu: Southwest Petroleum University, 2006.
[21] 巨全利,仝少凯.高产气井完井管柱纵向振动特性分析[J].钻采工艺,2014,37(02):79-82+119-120.
JU Quanli, TONG shaokai. Analysis of vertical vibration characteristics of completion string of high production gas well[J]. Drilling and production technology, 2014,37 (02): 79-82 + 119-120.
[22] Bagdatli S. Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory[J]. Structural Engineering and Mechanics, 2015, 55(2):281-298.
[23] 何星. 深水测试管柱流固耦合动力模型及应用研究[D]. 成都: 西南石油大学, 2015.
HE Xing. Fluid structure coupling dynamic model of deep-water testing string and its application[D]. Chengdu: Southwest Petroleum University, 2015.
[24] 邢誉峰,梁昆.梁纵向与横向耦合非线性振动分析[J].北京航空航天大学学报,2015, 41(08):1359-1366.
XING Yufeng, LIANG Kun. Nonlinear vibration analysis of longitudinal-transverse coupled beam [J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(08):1359-1366.
[25] Liu J., Zhao H., Yang S.X., et al. Nonlinear dynamic characteristic analysis of a landing string in deepwater riserless drilling[J]. Shock and Vibration, 2018, 2018:1-17.
[26] Wang W.M., Xiong M.H., Chen Q.R., et al. Simulation analysis of load transfer in deep sea pipe-in-pipe vertical system[J]. Oil Field Equipment, 2015,44(03):1-5.
[27] Li C.N.. Buckling of concentric string pipe-in-pipe [J]. SPE-187445-MS, 2017.
[28] 丁传义,沈时芳,贾斗南. 换热器传热管与支承板间碰撞力的分析和实验研究[J].核科学与工程,1989, 9(01):34-44.
DING Chuanyi, SHEN Shifang, JIA Dounan. The analysis and experimental study of impacting force of the tube against support plate in hast exchangers[J]. Chinese Journal of Nuclear Science and Engineering, 1989, 9(01):34-44.
[29] 姚廷强,陈锐搏,王立华,等. 考虑三维圆柱铰间隙碰撞的空间机构柔性多体动力学分析方法[J]. 振动与冲击, 2021, 40(01):297-307+316.
YAO Tingqiang, CHEN Ruibo, WANG Lihua, et al. Flexible multi-body dynamic method of spatial mechanisms considering 3-D cylindrical hinge clearance collision[J]. Journal of Vibration and Shock, 2021, 40(01):297-307+316.
[30] 赵洪亮. 非线性因素影响下海洋立管涡激振动机理研究[D]. 成都: 西南石油大学, 2019.
ZHAO Hongliang. Study on the mechanism of vortex -induced vibration of marine riser under the influence of nonlinear factors[D]. Chengdu: Southwest Petroleum University, 2019.
[31] Vandiver J.K., Jaiswal V., Jhingran V. Insights on vortex-induced, traveling waves on long risers[J]. Journal of Fluids & Structures, 2009, 25(4), 641-653.
[32] 徐秉业. 弹塑性力学及其应用[M]. 北京:机械工业出版社, 1984.
XU Bingye. Elastoplastic mechanics and its application[M]. Beijing: Machinery Industry Press, 1984.
[33] 闻邦椿. 机械设计手册(第六版)[M]. 北京:机械工业出版社, 2018.
WEN Bangchun. Machine design handbook (sixth edition) [M]. Beijing: Machinery Industry Press, 2018.
[34] Guo X., Liu J., Dai L., et al. Friction-wear failure mechanism of tubing strings used in high-pressure, high-temperature and high-yield gas wells[J]. Wear, 2021, 468-469: 203576.
[35] 李子丰, 王长进, 田伟超, 等. 钻柱力学三原理及定性模拟实验[J]. 石油学报, 2017, 38(2): 227-233.
LI Zifeng, WANG Changjin, TIAN Weichao, et al. Three principles of drill string mechanics and qualitative simulation experiments[J]. Acta Petrolei Sinica, 2017, 38(2): 227-223.
[36] Liu J., Guo X., Wang G., et al. Bi-nonlinear vibration model of tubing string in oil&gas well and its experimental verification[J]. Applied Mathematical Modelling, 2020, 81:50-69.
[37] 黄涛.钻柱耦合振动的理论及试验研究[D]. 北京: 中国石油大学, 2001.
HUANG Tao. Theoretical and experimental study on coupled vibration of drill string[D]. Beijing: China University of Petroleum, 2001.
[38] 沈文君. Truss Spar平台非线性随机运动响应特性研究[D]. 天津: 天津大学, 2012.
SHEN Wenjun. Study on the nonlinear stochastic dynamic response characteristics of a truss spar[D]. Tianjin: Tianjin University, 2012.

PDF(2808 KB)

383

Accesses

0

Citation

Detail

段落导航
相关文章

/